资源描述:
《lectures on lie groups - d. milicic》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、LecturesonLieGroupsDraganMiliˇci´cContentsChapter1.Basicdifferentialgeometry11.Differentiablemanifolds12.Quotients43.Foliations114.Integrationonmanifolds19Chapter2.Liegroups231.Liegroups232.LiealgebraofaLiegroup433.HaarmeasuresonLiegroups72Chapter3.CompactLiegroups771.CompactLiegroups77Chapter4.Bas
2、icLiealgebratheory971.Solvable,nilpotentandsemisimpleLiealgebras972.Liealgebrasandfieldextensions1043.Cartan’scriterion1094.SemisimpleLiealgebras1135.Cartansubalgebras125Chapter5.StructureofsemisimpleLiealgebras1371.Rootsystems1372.RootsystemofasemisimpleLiealgebra145iiiCHAPTER1Basicdifferentialgeo
3、metry1.Differentiablemanifolds1.1.Differentiablemanifoldsanddifferentiablemaps.LetMbeatopo-logicalspace.AchartonMisatriplec=(U,ϕ,p)consistingofanopensubsetU⊂M,anintegerp∈ andahomeomorphismϕofUontoanopensetin+p.TheopensetUiscalledthedomainofthechartc,andtheintegerpisthedimensionofthechartc.Thecharts
4、c=(U,ϕ,p)andc0=(U0,ϕ0,p0)onMarecompatibleifeitherU∩U0=∅orU∩U06=∅andϕ0◦ϕ−1‘:ϕ(U∩U0)−→ϕ0(U∩U0)isaC∞-diffeomorphism.AfamilyAofchartsonMisanatlasofMifthedomainsofchartsformacoveringofMandallanytwochartsinAarecompatible.AtlasesAandBofMarecompatibleiftheirunionisanatlasonM.Thisisobviouslyanequivalencere
5、lationonthesetofallatlasesonM.Eachequivalenceclassofatlasescontainsthelargestelementwhichisequaltotheunionofallatlasesinthisclass.Suchatlasiscalledsaturated.AdifferentiablemanifoldMisahausdorfftopologicalspacewithasaturatedatlas.Clearly,adifferentiablemanifoldisalocallycompactspace.Itisalsolocallyco
6、nnected.Therefore,itsconnectedcomponentsareopenandclosedsubsets.LetMbeadifferentiablemanifold.Achartc=(U,ϕ,p)isachartaroundm∈Mifm∈U.Wesaythatitiscenteredatmifϕ(m)=0.Ifc=(U,ϕ,p)andc0=(U0,ϕ0,p0)aretwochartsaroundm,thenp=p0.There-fore,allchartsaroundmhavethesamedimension.Therefore,wecallpthedimen-sio
7、nofMatthepointmanddenoteitbydimmM.Thefunctionm7−→dimmMislocallyconstantonM.Therefore,itisconstantonconnectedcomponentsofM.IfdimmM=pforallm∈M,wesaythatMisanp-dimensionalmanifold.LetMandNbetwodifferentiablemanifolds.Acont