lectures on lie groups - d. milicic

lectures on lie groups - d. milicic

ID:14373175

大小:1.06 MB

页数:153页

时间:2018-07-28

lectures on lie groups - d. milicic_第1页
lectures on lie groups - d. milicic_第2页
lectures on lie groups - d. milicic_第3页
lectures on lie groups - d. milicic_第4页
lectures on lie groups - d. milicic_第5页
资源描述:

《lectures on lie groups - d. milicic》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LecturesonLieGroupsDraganMiliˇci´cContentsChapter1.Basicdifferentialgeometry11.Differentiablemanifolds12.Quotients43.Foliations114.Integrationonmanifolds19Chapter2.Liegroups231.Liegroups232.LiealgebraofaLiegroup433.HaarmeasuresonLiegroups72Chapter3.CompactLiegroups771.CompactLiegroups77Chapter4.Bas

2、icLiealgebratheory971.Solvable,nilpotentandsemisimpleLiealgebras972.Liealgebrasandfieldextensions1043.Cartan’scriterion1094.SemisimpleLiealgebras1135.Cartansubalgebras125Chapter5.StructureofsemisimpleLiealgebras1371.Rootsystems1372.RootsystemofasemisimpleLiealgebra145iiiCHAPTER1Basicdifferentialgeo

3、metry1.Differentiablemanifolds1.1.Differentiablemanifoldsanddifferentiablemaps.LetMbeatopo-logicalspace.AchartonMisatriplec=(U,ϕ,p)consistingofanopensubsetU⊂M,anintegerp∈andahomeomorphismϕofUontoanopensetin+p.TheopensetUiscalledthedomainofthechartc,andtheintegerpisthedimensionofthechartc.Thecharts

4、c=(U,ϕ,p)andc0=(U0,ϕ0,p0)onMarecompatibleifeitherU∩U0=∅orU∩U06=∅andϕ0◦ϕ−1‘:ϕ(U∩U0)−→ϕ0(U∩U0)isaC∞-diffeomorphism.AfamilyAofchartsonMisanatlasofMifthedomainsofchartsformacoveringofMandallanytwochartsinAarecompatible.AtlasesAandBofMarecompatibleiftheirunionisanatlasonM.Thisisobviouslyanequivalencere

5、lationonthesetofallatlasesonM.Eachequivalenceclassofatlasescontainsthelargestelementwhichisequaltotheunionofallatlasesinthisclass.Suchatlasiscalledsaturated.AdifferentiablemanifoldMisahausdorfftopologicalspacewithasaturatedatlas.Clearly,adifferentiablemanifoldisalocallycompactspace.Itisalsolocallyco

6、nnected.Therefore,itsconnectedcomponentsareopenandclosedsubsets.LetMbeadifferentiablemanifold.Achartc=(U,ϕ,p)isachartaroundm∈Mifm∈U.Wesaythatitiscenteredatmifϕ(m)=0.Ifc=(U,ϕ,p)andc0=(U0,ϕ0,p0)aretwochartsaroundm,thenp=p0.There-fore,allchartsaroundmhavethesamedimension.Therefore,wecallpthedimen-sio

7、nofMatthepointmanddenoteitbydimmM.Thefunctionm7−→dimmMislocallyconstantonM.Therefore,itisconstantonconnectedcomponentsofM.IfdimmM=pforallm∈M,wesaythatMisanp-dimensionalmanifold.LetMandNbetwodifferentiablemanifolds.Acont

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。