introduction to p-adic numbers and p-adic analysis - a. baker

introduction to p-adic numbers and p-adic analysis - a. baker

ID:14307758

大小:339.41 KB

页数:62页

时间:2018-07-27

introduction to p-adic numbers and p-adic analysis - a. baker_第1页
introduction to p-adic numbers and p-adic analysis - a. baker_第2页
introduction to p-adic numbers and p-adic analysis - a. baker_第3页
introduction to p-adic numbers and p-adic analysis - a. baker_第4页
introduction to p-adic numbers and p-adic analysis - a. baker_第5页
资源描述:

《introduction to p-adic numbers and p-adic analysis - a. baker》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnIntroductiontop-adicNumbersandp-adicAnalysisA.J.Baker[4/11/2002]DepartmentofMathematics,UniversityofGlasgow,GlasgowG128QW,Scotland.E-mailaddress:a.baker@maths.gla.ac.ukURL:http://www.maths.gla.ac.uk/»ajbContentsIntroduction1Chapter1.Congruencesandmod

2、ularequations3Chapter2.Thep-adicnormandthep-adicnumbers15Chapter3.Someelementaryp-adicanalysis29Chapter4.ThetopologyofQp33Chapter5.p-adicalgebraicnumbertheory45Bibliography51Problems53ProblemSet153ProblemSet254ProblemSet355ProblemSet456ProblemSet557Pro

3、blemSet6581IntroductionThesenoteswerewrittenforafinalyearundergraduatecoursewhichranatManchesterUniversityin1988/9andalsotaughtinlateryearsbyDrM.McCrudden.Irewrotethemin2000tomakethemavailabletointerestedgraduatestudents.Theapproachtakenisverydowntoeart

4、handmakesfewassumptionsbeyondstandardundergraduateanalysisandalgebra.Becauseofthisthecoursewasasselfcontainedaspossible,coveringbasicnumbertheoryandanalyticideaswhichwouldprobablybefamiliartomoreadvancedreaders.Theproblemsetsarebasedonthoseforproducedf

5、orthecourse.IwouldliketothankJavierDiaz-Vargasforpointingoutnumerouserrors.1CHAPTER1CongruencesandmodularequationsLetn2Z(wewillusuallyhaven>0).Wedefinethebinaryrelation´bynDefinition1.1.Ifx;y2Z,thenx´yifandonlyifnj(x¡y).Thisisoftenalsowrittennx´y(modn)o

6、rx´y(n).Noticethatwhenn=0,x´yifandonlyifx=y,sointhatcase´isreallyjustequality.n0Proposition1.2.Therelation´isanequivalencerelationonZ.nProof.Letx;y;z2Z.Clearly´isreflexivesincenj(x¡x)=0.Itissymmetricsincenifnj(x¡y)thenx¡y=knforsomek2Z,hencey¡x=(¡k)nands

7、onj(y¡x).Fortransitivity,supposethatnj(x¡y)andnj(y¡z);thensincex¡z=(x¡y)+(y¡z)wehavenj(x¡z).¤Wedenotetheequivalenceclassofx2Zby[x]norjust[x]ifnisunderstood;itisalsocommontousexforthisifthevalueofnisclearfromthecontext.Bydefinition,[x]n=fy2Z:y´xg=fy2Z:y=

8、x+knforsomek2Zg;nandthereareexactlyjnjsuchresidueclasses,namely[0]n;[1]n;:::;[n¡1]n:Ofcoursewecanreplacetheserepresentativesbyanyothersasrequired.Definition1.3.ThesetofallresidueclassesofZmodulonisZ=n=f[x]n:x=0;1;:::;n¡1g:Ifn=0weinterpr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。