complex analysis - k. houston

complex analysis - k. houston

ID:14306949

大小:387.58 KB

页数:98页

时间:2018-07-27

complex analysis - k. houston_第1页
complex analysis - k. houston_第2页
complex analysis - k. houston_第3页
complex analysis - k. houston_第4页
complex analysis - k. houston_第5页
资源描述:

《complex analysis - k. houston》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ComplexAnalysis2002-2003cK.Houston20031ComplexFunctionsInthissectionwewilldefinewhatwemeanbyacomplexfunc-tion.Wewillthengeneralisethedefinitionsoftheexponential,sineandcosinefunctionsusingcomplexpowerseries.Todealwithcomplexpowerserieswedefinethenotionsofconver-gentandabsolutelyconvergent,andseehowto

2、usetheratiotestfromrealanalysistodetermineconvergenceandradiusofconvergenceforthesecomplexseries.Westartbydefiningdomainsinthecomplexplane.Thisrequirestheprelimarydefinition.Definition1.1Theε-neighbourhoodofacomplexnumberzisthesetofcom-plexnumbers{w∈C:

3、z−w

4、<ε}whereεispositivenumber.Thustheε-neigbourh

5、oodofapointzisjustthesetofpointslyingwithinthecircleofradiusεcentredatz.Notethatitdoesn’tcontainthecircle.Definition1.2Adomainisanon-emptysubsetDofCsuchthatforeverypointinDthereexistsaε-neighbourhoodcontainedinD.Examples1.3Thefollowingaredomains.(i)D=C.(Takec∈C.Then,anyε>0willdoforanε-neighbourhood

6、ofc.)(ii)D=C{0}.(Takec∈Dandletε=1(

7、c

8、).Thisgivesa2ε-neighbourhoodofcinD.)(iii)D={z:

9、z−a

10、0.(Takec∈Candletε=1(R−

11、c−a

12、).Thisgivesaε-neighbourhoodofcinD.)2Example1.4ThesetofrealnumbersRisnotadomain.Consideranyrealnumber,thenanyε-neighbourhoodmustcontainsomecomplexnumbers,i.e.theε-neighbou

13、rhooddoesnotlieintherealnumbers.Wecannowdefinethebasicobjectofstudy.1Definition1.5LetDbeadomaininC.Acomplexfunction,denotedf:D→C,isamapwhichassignstoeachzinDanelementofC,thisvalueisdenotedf(z).CommonError1.6Notethatfisthefunctionandf(z)isthevalueofthefunctionatz.Itiswrongtosayf(z)isafunction,butsome

14、timespeopledo.Examples1.7(i)Letf(z)=z2forallz∈C.(ii)Letf(z)=

15、z

16、forallz∈C.Notethatherewehaveacomplexfunctionforwhicheveryvalueisreal.(iii)Letf(z)=3z4−(5−2i)z2+z−7forallz∈C.Allcomplexpolynomialsgivecomplexfunctions.(iv)Letf(z)=1/zforallz∈C{0}.ThisfunctioncannotbeextendedtoallofC.Remark1.8Functionss

17、uchassinxforxrealarenotcomplexfunctionssincethereallineinCisnotadomain.Laterweseehowtoextendtheconceptofthesinesothatitiscomplexfunctiononthewholeofthecomplexplane.Obviously,iffandgarecomplexfunctions,thenf+g,f−g

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。