complex-analysis

complex-analysis

ID:34615659

大小:198.04 KB

页数:53页

时间:2019-03-08

complex-analysis_第1页
complex-analysis_第2页
complex-analysis_第3页
complex-analysis_第4页
complex-analysis_第5页
资源描述:

《complex-analysis》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ComplexAnalysisAntonDeitmarContents1Thecomplexnumbers32Holomorphy73PowerSeries94PathIntegrals145Cauchy'sTheorem176Homotopy197Cauchy'sIntegralFormula258Singularities319TheResidueTheorem3410Constructionoffunctions3811Gamma&Zeta451COMPLEXANALYSIS212Theupperhalfplane4713Con

2、formalmappings5014Simpleconnectedness53COMPLEXANALYSIS31ThecomplexnumbersProposition1.1Thecomplexconjugationhasthefollowingproperties:(a)z+w=z+w,(b)zw=zw,(c)z1=z1,orz=z,ww(d)z=z,(e)z+z=2Re(z),andzz=2iIm(z).COMPLEXANALYSIS4Proposition1.2Theabsolutevaluesatis es:(a)j

3、zj=0,z=0,(b)jzwj=jzjjwj,(c)jzj=jzj,(d)jz1j=jzj1,(e)jz+wjjzj+jwj,(triangleinequality).Proposition1.3AsubsetACisclosedi foreverysequence(an)inAthatconvergesinCthelimita=limn!1analsobelongstoA.WesaythatAcontainsallitslimitpoints.COMPLEXANALYSIS5Proposition1.4LetOdenote

4、thesystemofallopensetsinC.Then(a);2O,C2O,(b)A;B2O)AB2O,S(c)Ai2Oforeveryi2Iimpliesi2IAi2O.Proposition1.5ForasubsetKCthefollowingareequivalent:(a)Kiscompact.(b)Everysequence(zn)inKhasaconvergentsubsequencewithlimitinK.COMPLEXANALYSIS6Theorem1.6LetSCbecompactandf:S!Cbec

5、ontinuous.Then(a)f(S)iscompact,and(b)therearez1;z22Ssuchthatforeveryz2S,jf(z1)jjf(z)jjf(z2)j:COMPLEXANALYSIS72HolomorphyProposition2.1LetDCbeopen.Iff;gareholomorphicinD,thensoareffor2C,f+g,andfg.Wehave00000(f)=f;(f+g)=f+g;000(fg)=fg+fg:LetfbeholomorphiconDandgbeh

6、olomorphiconE,wheref(D)E.ThengfisholomorphiconDand000(gf)(z)=g(f(z))f(z):Finally,iffisholomorphiconDandf(z)6=0forevery1z2D,thenisholomorphiconDwithf1f0(z)0()(z)=:ff(z)2COMPLEXANALYSIS8Theorem2.2(Cauchy-RiemannEquations)Letf=u+ivbecomplexdi erentiableatz=x+iy.Thenthe

7、partialderivativesux;uy;vx;vyallexistandsatisfyux=vy;uy=vx:Proposition2.3SupposefisholomorphiconadiskD.(a)Iff0=0inD,thenfisconstant.(b)Ifjfjisconstant,thenfisconstant.COMPLEXANALYSIS93PowerSeriesProposition3.1Let(an)beasequenceofcomplexnumbers.P(a)Supposethatanconverge

8、s.Thenthesequence(an)tendstozero.Inparticular,thesequence(an)isbounded.PP(b)Ifjanjconverges,thenanconverges.In

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签