子空间半监督fisher判别分析

子空间半监督fisher判别分析

ID:14285351

大小:168.00 KB

页数:6页

时间:2018-07-27

子空间半监督fisher判别分析_第1页
子空间半监督fisher判别分析_第2页
子空间半监督fisher判别分析_第3页
子空间半监督fisher判别分析_第4页
子空间半监督fisher判别分析_第5页
资源描述:

《子空间半监督fisher判别分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、Vol.35,No.12ACTAAUTOMATICASINICADecember,2009SubspaceSemi-supervisedFisherDiscriminantAnalysisYANGWu-Yi1,2,3LIANGWei1XINLe4ZHANGShu-Wu1AbstractFisherdiscriminantanalysis(FDA)isapopularmethodforsuperviseddimensionalityreduction.FDAseeksforanembeddingtransformationsuchthattheratioofthebetwee

2、n-classscattertothewithin-classscatterismaximized.Labeleddata,however,oftenconsumemuchtimeandareexpensivetoobtain,astheyrequiretheeffortsofhumanannotators.Inordertocopewiththeproblemofeffectivelycombiningunlabeleddatawithlabeleddatatofindtheembeddingtransformation,weproposeanovelmethod,calledsu

3、bspacesemi-supervisedFisherdiscriminantanalysis(SSFDA),forsemi-superviseddimensionalityreduction.SSFDAaimstofindanembeddingtransformationthatrespectsthediscriminantstructureinferredfromthelabeleddataandtheintrinsicgeometricalstructureinferredfromboththelabeledandunlabeleddata.WealsoshowthatSS

4、FDAcanbeextendedtononlineardimensionalityreductionscenariosbyapplyingthekerneltrick.Theexperimentalresultsonfacerecognitiondemonstratetheeffectivenessofourproposedalgorithm.KeywordsFisherdiscriminantanalysis(FDA),semi-supervisedlearning,manifoldregularization,dimensionalityreductionIncasesofm

5、achinelearninganddatamining,suchasimageretrieval,andfacerecognition,wemayincreasinglyconfrontwiththecollectionofhigh-dimensionaldata.Thisleadsustoconsidermethodsofdimensionalityreductionthatallowustorepresentthedatainalowerdimensionalspace.Techniquesfordimensionalityreductionhaveat-tractedmu

6、chattentionincomputervisionandpatternrecognition.Themostpopulardimensionalityreductional-gorithmsincludeprincipalcomponentanalysis(PCA)[1−2]andFisherdiscriminantanalysis(FDA)[3].PCAisanunsupervisedmethod.Itprojectstheoriginalm-dimensionaldataintoad(d¿m)-dimensionalsubspaceinwhichthedatavaria

7、nceismaximized.Itcomputestheeigenvectorsofthedatacovariancematrix,andapprox-imatestheoriginaldatabyalinearcombinationoftheleadingeigenvectors.Ifthedataareembeddedinalinearsubspace,PCAisguaranteedtodiscoverthedimensionalityofthesubspaceandproducesac

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。