三角函数知识点总结

三角函数知识点总结

ID:14275122

大小:436.50 KB

页数:5页

时间:2018-07-27

三角函数知识点总结_第1页
三角函数知识点总结_第2页
三角函数知识点总结_第3页
三角函数知识点总结_第4页
三角函数知识点总结_第5页
资源描述:

《三角函数知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、三角函数3、弧长公式:.扇形面积公式:5、三角函数在各象限的符号:(一全二正弦,三切四余弦)“一全正;二正弦;三两切;四余弦”。意思:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。7.三角函数的定义域:三角函数定义域sinxcosxtanxcotxsecxcscx8、同角三角函数的基本关系式:9、诱导公式:“奇变偶不变,符号看象限”“奇、偶”指的是π/2的倍数的奇偶

2、,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。sin(π/2+α)=cosα  cos(π/2+α)=-sinα  tan(π/2+α)=-cotα  cot(π/2+α)=-tanα  sec(π/2+α)=-cscα csc(π/2+α)=secα三角函数的公式:(一)基本关系(二)角与角之间的互换公式组一公式组二公式组三公式组四,,,

3、.10.正弦、余弦、正切、余切函数的图象的性质:(A、>0)定义域RRR值域RR周期性奇偶性奇函数偶函数奇函数奇函数当非奇非偶当奇函数单调性上为增函数;上为减函数();上为增函数上为减函数()上为增函数()上为减函数()上为增函数;上为减函数()注意:①与的单调性正好相反;与的单调性也同样相反.一般地,若在上递增(减),则在上递减(增).②与的周期是.③或()的周期.的周期为2(,如图,翻折无效).⑤当·;·.⑥与是同一函数,而是偶函数,则.⑦函数在上为增函数.(×)[只能在某个单调区间单调递增.若在整个定义

4、域,为增函数,同样也是错误的].⑧定义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)奇偶性的单调性:奇同偶反.例如:是奇函数,是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若的定义域,则一定有.(的定义域,则无此性质)⑨不是周期函数;为周期函数();是周期函数(如图);为周期函数();的周期为(如图),并非所有周期函数都有最小正周期,例如:.⑩有.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y=As

5、in(ωx+φ)的振幅

6、A

7、,周期,频率,相位初相(即当x=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当

8、A

9、>1)或缩短(当0<

10、A

11、<1)到原来的

12、A

13、倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<

14、ω

15、<1)或缩短(

16、ω

17、>1)到原来的倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用ωx替换x)由y=sinx的图象

18、上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。4、反三角函数:函数y=si

19、nx,的反函数叫做反正弦函数,记作y=arcsinx,它的定义域是[-1,1],值域是.函数y=cosx,(x∈[0,π])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[-1,1],值域是[0,π].函数y=tanx,的反函数叫做反正切函数,记作y=arctanx,它的定义域是(-∞,+∞),值域是.函数y=ctgx,[x∈(0,π)]的反函数叫做反余切函数,记作y=arcctgx,它的定义域是(-∞,+∞),值域是(0,π).一、反三角函数.1.反三角函数:⑴反正弦函数是奇函数,故,(一定

20、要注明定义域,若,没有与一一对应,故无反函数)注:,,.⑵反余弦函数非奇非偶,但有,.注:①,,.②是偶函数,非奇非偶,而和为奇函数.⑶反正切函数:,定义域,值域(),是奇函数,,.注:,.⑷反余切函数:,定义域,值域(),是非奇非偶.,.注:①,.②与互为奇函数,同理为奇而与非奇非偶但满足.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。