欢迎来到天天文库
浏览记录
ID:14193153
大小:371.35 KB
页数:8页
时间:2018-07-26
《三角函数知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中数学第四章-三角函数考试内容:数学探索©版权所有www.delve.cn角的概念的推广.弧度制.数学探索©版权所有www.delve.cn任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.数学探索©版权所有www.delve.cn两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.数学探索©版权所有www.delve.cn正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.数学探索©版权所有www.delve
2、.cn正弦定理.余弦定理.斜三角形解法.数学探索©版权所有www.delve.cn考试要求:数学探索©版权所有www.delve.cn(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.数学探索©版权所有www.delve.cn(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.数学探索©版权所有www.delve.cn(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.数学
3、探索©版权所有www.delve.cn(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.数学探索©版权所有www.delve.cn(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.数学探索©版权所有www.delve.cn(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.数学探索©版权所有www.delve.cn(7)掌握正弦定理、余弦定理,并能初步运用它们解
4、斜三角形.数学探索©版权所有www.delve.cn(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα•cosα=1”.§04.三角函数知识要点1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):②终边在x轴上的角的集合:③终边在y轴上的角的集合:④终边在坐标轴上的角的集合:⑤终边在y=x轴上的角的集合:⑥终边在轴上的角的集合:⑦若角与角的终边关于x轴对称,则角与角的关系:⑧若角与角的终边关于y轴对称,则角与角的关系:⑨若角与角的终边在一条直线上,则角与角的
5、关系:⑩角与角的终边互相垂直,则角与角的关系:高三数学总复习—三角函数2.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式:1rad=°≈57.30°=57°18ˊ.1°=≈0.01745(rad)3、弧长公式:.扇形面积公式:4、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则;;;;;..5、三角函数在各象限的符号:(一全二正弦,三切四余弦)6、
6、三角函数线正弦线:MP;余弦线:OM;正切线:AT.7.三角函数的定义域:三角函数定义域sinxcosxtanxcotxsecxcscx8、同角三角函数的基本关系式:9、诱导公式:高三数学总复习—三角函数“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二公式组三公式组四公式组五公式组六(二)角与角之间的互换公式组一公式组二公式组三公式组四公式组五,,,.高三数学总复习—三角函数10.正弦、余弦、正切、余切函数的图象的性质:(A、>0)定义域RRR值域RR周期性奇偶性奇函数偶函数奇函数奇函数当非奇非偶当奇函数
7、单调性上为增函数;上为减函数();上为增函数上为减函数()上为增函数()上为减函数()上为增函数;上为减函数()注意:①与的单调性正好相反;与的单调性也同样相反.一般地,若在上递增(减),则在上递减(增).②与的周期是.③或()的周期.的周期为2(,如图,翻折无效).④的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心().高三数学总复习—三角函数⑤当·;·.⑥与是同一函数,而是偶函数,则.⑦函数在上为增函数.(×)[只能在某个单调区间单调递增.若在整个定义域,为增函数,同样也是错误的].⑧定
8、义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)奇偶性的单调性:奇同偶反.例如:是奇函数,是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若的定义域,则一定有.(的定义域,则无此性质)⑨不是周期函数;为周期函数();是周
此文档下载收益归作者所有