abstract algebra

abstract algebra

ID:14252827

大小:848.92 KB

页数:92页

时间:2018-07-27

abstract algebra_第1页
abstract algebra_第2页
abstract algebra_第3页
abstract algebra_第4页
abstract algebra_第5页
资源描述:

《abstract algebra》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、CHAPTER1NumberFields1.Example:QuadraticnumberfieldsBeforeweconsidernumberfieldsingeneral,letusbeginwiththefairlyconcretecaseofquadraticnumberfields.AquadraticnumberfieldisanextensionKofQofdegree2.Thefundamentalexamples(infact,asweshallseeinamomenttheonlyexample)arefieldsoftheform√√Q(d)={a+bd

2、a,b∈

3、Q}whered∈Qisnotthesquareofanotherrationalnumber.Thereisanissuethatarisesassoonaswewritedownthesefields,anditis√importantthatwedealwithitimmediately:whatexactlydowemeanbyd?Thereareseveralpossibleanswerstothisquestion.Themostobviousisthatby√√dwemeanaspecificchoiceofacomplexsquarerootofd.Q(d)isth

4、endefinedasasubfieldofthecomplexnumbers.Thedifficultywiththisisthatthenotation√“d”isambiguous;dhastwocomplexsquareroots,andthereisnoalgebraicwaytotellthemapart.Algebraistshaveastandardwaytoavoidthissortofambiguity;wecansimplydefine√Q(d)=Q[x]/(x2−d).√Thereisnoambiguitywiththisnotation;dreallymeans

5、x,andxbehavesasaformalalgebraicobjectwiththepropertythatx2=d.Thisseconddefinitionissomehowthealgebraicallycorrectone,asthereisno√ambiguityanditallowsQ(d)toexistcompletelyindependentlyofthecomplex√numbers.However,itisfareasiertothinkaboutQ(d)asasubfieldofthecomplex√numbers.TheabilitytothinkofQ(

6、d)asasubfieldofthecomplexnumbersalso√√becomesimportantwhenonewishestocomparefieldsQ(d1)andQ(d2)fortwodifferentnumbersdandd;theabstractalgebraicfieldsQ[x]/(x2−d)and121Q[y]/(y2−d)havenonaturalrelationtoeachother,whilethesesamefieldsviewed2assubfieldsofCcanbecomparedmoreeasily.Thebestapproach,then,se

7、emstobetopretendtofollowtheformalalgebraicoption,buttoactuallyvieweverythingassubfieldsofthecomplexnumbers.Wecandothisthroughthenotionofacomplexembedding;thisissimplyaninjectionσ:Q[x]/(x2−d)/→C.Aswehavealreadyobserved,thereareexactlytwosuchmaps,oneforeachcomplexsquarerootofd.Beforewecontinuew

8、ereallyoughttodecidewhichcomplexnumberwemean√byd.Thereisunfortunatelynoconsistentwaytodothis,inthesensethatwe561.NUMBERFIELDScannotarrangetohavepppd1d2=d1d2√foralld1,d2∈Q.Inordertobeconcrete,letuschoose√dtobethepositivesquarerootofdforalld>0anddtob

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。