欢迎来到天天文库
浏览记录
ID:14252827
大小:848.92 KB
页数:92页
时间:2018-07-27
《abstract algebra》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CHAPTER1NumberFields1.Example:QuadraticnumberfieldsBeforeweconsidernumberfieldsingeneral,letusbeginwiththefairlyconcretecaseofquadraticnumberfields.AquadraticnumberfieldisanextensionKofQofdegree2.Thefundamentalexamples(infact,asweshallseeinamomenttheonlyexample)arefieldsoftheform√√Q(d)={a+bd
2、a,b∈
3、Q}whered∈Qisnotthesquareofanotherrationalnumber.Thereisanissuethatarisesassoonaswewritedownthesefields,anditis√importantthatwedealwithitimmediately:whatexactlydowemeanbyd?Thereareseveralpossibleanswerstothisquestion.Themostobviousisthatby√√dwemeanaspecificchoiceofacomplexsquarerootofd.Q(d)isth
4、endefinedasasubfieldofthecomplexnumbers.Thedifficultywiththisisthatthenotation√“d”isambiguous;dhastwocomplexsquareroots,andthereisnoalgebraicwaytotellthemapart.Algebraistshaveastandardwaytoavoidthissortofambiguity;wecansimplydefine√Q(d)=Q[x]/(x2−d).√Thereisnoambiguitywiththisnotation;dreallymeans
5、x,andxbehavesasaformalalgebraicobjectwiththepropertythatx2=d.Thisseconddefinitionissomehowthealgebraicallycorrectone,asthereisno√ambiguityanditallowsQ(d)toexistcompletelyindependentlyofthecomplex√numbers.However,itisfareasiertothinkaboutQ(d)asasubfieldofthecomplex√numbers.TheabilitytothinkofQ(
6、d)asasubfieldofthecomplexnumbersalso√√becomesimportantwhenonewishestocomparefieldsQ(d1)andQ(d2)fortwodifferentnumbersdandd;theabstractalgebraicfieldsQ[x]/(x2−d)and121Q[y]/(y2−d)havenonaturalrelationtoeachother,whilethesesamefieldsviewed2assubfieldsofCcanbecomparedmoreeasily.Thebestapproach,then,se
7、emstobetopretendtofollowtheformalalgebraicoption,buttoactuallyvieweverythingassubfieldsofthecomplexnumbers.Wecandothisthroughthenotionofacomplexembedding;thisissimplyaninjectionσ:Q[x]/(x2−d)/→C.Aswehavealreadyobserved,thereareexactlytwosuchmaps,oneforeachcomplexsquarerootofd.Beforewecontinuew
8、ereallyoughttodecidewhichcomplexnumberwemean√byd.Thereisunfortunatelynoconsistentwaytodothis,inthesensethatwe561.NUMBERFIELDScannotarrangetohavepppd1d2=d1d2√foralld1,d2∈Q.Inordertobeconcrete,letuschoose√dtobethepositivesquarerootofdforalld>0anddtob
此文档下载收益归作者所有