粒子群算法及其参数设置毕业论文

粒子群算法及其参数设置毕业论文

ID:1425029

大小:1.12 MB

页数:80页

时间:2017-11-11

粒子群算法及其参数设置毕业论文_第1页
粒子群算法及其参数设置毕业论文_第2页
粒子群算法及其参数设置毕业论文_第3页
粒子群算法及其参数设置毕业论文_第4页
粒子群算法及其参数设置毕业论文_第5页
资源描述:

《粒子群算法及其参数设置毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、粒子群算法及其参数设置毕业论文目录摘要IIAbstractIII1.引言11.1研究背景和课题意义11.2参数的影响11.3应用领域21.4电子资源21.5主要工作22.基本粒子群算法32.1粒子群算法思想的起源32.2算法原理42.3基本粒子群算法流程52.4特点62.5带惯性权重的粒子群算法72.7粒子群算法的研究现状83.粒子群优化算法的改进策略93.1粒子群初始化93.2邻域拓扑93.3混合策略124.参数设置144.1对参数的仿真研究144.2测试仿真函数154.3应用单因子方差分析参数对结果影响334.4对参数的理论分析345结论与展望39致谢43附录44771.引言1.1研究

2、背景和课题意义“人工生命”是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容:1、研究如何利用计算技术研究生物现象。2、研究如何利用生物技术研究计算问题。现在已经有很多源于生物现象的计算技巧。例如,人工神经网络是简化的大脑模型。遗传算法是模拟基因进化过程的。现在我们讨论另一种生物系统-社会系统。也可称做“群智能”(swarmintelligence)。这些模拟系统利用局部信息从而可能产生不可预测的群体行为。粒子群优化算法(PSO)也是起源对简单社会系统的模拟。最初设想是模拟鸟群觅食的过程。但后来发现PSO是一种很好的优化工具。优化是科学研究、工程技术和经济管理等领域的重要研究

3、课题。粒子群优化算法[1](简称PSO)是由Kennedy和Eberhart通过对鸟群、鱼群和人类社会某些行为的观察研究,于1995年提出的一种新颖的进化算法。虽然PSO算法发展迅速并取得了可观的研究成果,但其理论基础仍相对薄弱,尤其是算法基本模型中的参数设置和优化问题还缺乏成熟的理论论证和研究。鉴于PSO的发展历史尚短,它在理论基础与应用推广上都还存在一些缺陷,有待解决。本文通过对PSO算法的步骤的归纳、特点的分析,利用统计中的方差分析,通过抽样实验方法,论证了该算法中关键参数因子:惯性权值、加速因子对算法整体性能的影响效果,并提出了参数设置的指导原则,给出了关键参数设置,为PSO算法的

4、推广与改进提供了思路。1.2参数的影响标准粒子群算法中主要的参数变量为(惯性权值),,(加速因子),,本文重点对参数,,做数据统计实验。包括不变的情况下通过,变化找出加速因子对算法的影响。还有保持,不变对分别取不同值分析其对算法结果影响。771.3应用领域近年来,PSO快速发展,在众多领域得到了广泛应用。本文将应用研究分典型理论问题研究和实际工业应用两大类。典型理论问题包括:组合优化、约束优化、多目标优化、动态系统优化等。实际工业应用有:电力系统、滤波器设计、自动控制、数据聚类、模式识别与图像处理、化工、机械、通信、机器人、经济、生物信息、医学、任务分配、TSP等等。1.4电子资源身处信息

5、和网络时代的我们是幸运的,丰富的电子资源能让我们受益匪浅。如果想较快地对PSO有一个比较全面的了解,借助网络空间的电子资源无疑是不二之选。对一些初学者而言,哪里能下载得到PSO的源程序,是他们很关心的话题;即使对一些资深的读者,为了验证自己提出的新算法或改进算法,如果能找到高级别国际期刊或会议上最近提出的算法源程序,那也是事半功倍的美事。这里介绍当今PSO研究领域较有影响的一个网址:MauriceClerc博士(Maurice.Clerc@WriteMe.com)的PSO主页:http://clerc.maurice.free.fr/pso/该主页主要介绍MauriceClerc博士带领的

6、PSO研究小组的研究成果。除了从中可以得到他们近几年公开发表的相关文献和源代码,还可以下载一些未公开发表的文章。这些未公开发表的文章往往是MauriceClerc博士的一些设想,而且在不断更新,如“Backtorandomtopology”、“Initialisationsforparticleswarmoptimization”、“SomeideasaboutPSO”等等,对PSO研究人员很有启发。1.5主要工作论文内容介绍了基本粒子群算法,用matlab实现标准粒子群算法算法,对两个不同类型函数做具体分析,然后对其参数(惯性权值),,(加速因子)测试。分别对其利用单因子方差分析法,说明

7、不同参数水平对算法速率性能的影响。并且通过公式计算准确判断参数对算法影响。最后说明粒子群优化算法在实际中的应用以及对未来展望,最后总结了算法的优缺点,附录里面附有测试程序和测试函数。772.基本粒子群算法2.1粒子群算法思想的起源粒子群优化(ParticleSwarmOptimization,PSO)算法[1]是Kennedy和Eberhart受人工生命研究结果的启发、通过模拟鸟群觅食过程中的迁徙和群聚行为而提出的一种基

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。