傅里叶级数的数学推导

傅里叶级数的数学推导

ID:14181250

大小:260.50 KB

页数:6页

时间:2018-07-26

傅里叶级数的数学推导_第1页
傅里叶级数的数学推导_第2页
傅里叶级数的数学推导_第3页
傅里叶级数的数学推导_第4页
傅里叶级数的数学推导_第5页
资源描述:

《傅里叶级数的数学推导》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、傅里叶级数的数学推导   首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。  但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。  如下就是傅里叶级数的公式:    不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊

2、跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π,π],也相当一个周期T的宽度。  能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式

3、的得出过程: 1、把一个周期函数表示成三角级数:  首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:  f(x)=Asin(ωt+ψ)  这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。   然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数Ansin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于

4、是,傅里叶写出下式:(关于傅里叶推导纯属猜想)     这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。    应该说,傅里叶是一

5、个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。    于是乎,傅里叶首先对式5作如下变形:    这样,公式5就可以写成如下公式6的形式:    这个公式6

6、就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:  这是为下一步傅里叶级数展开时所用积分的准备知识。一个三角函数系:1,cosx,sinx,cos2x,sin2x,…,cosnx,sinnx,…如果这一堆函数(包括常数1)中任何两个不同函数的乘积在区间[-π,π]上的积分等于零,就说三角函数系在区间[-π,π]上正交,即有如下式子:    以上各式在区间[-π,π]的定积分均为0,第1第2式可视为三角函数cos和sin与1相乘的积分;第3

7、-5式则为sin和cos的不同组合相乘的积分式。除了这5个式子外,不可能再有其他的组合了。注意,第4第5两个式中,k不能等于n,否则就不属于“三角函数系中任意两个不同函数”的定义了,变成同一函数的平方了。但第3式中,k与n可以相等,相等时也是二个不同函数。下面通过计算第4式的定积分来验证其正确性,第4式中二函数相乘可以写成:      可见在指定[-π,π]的区间里,该式的定积分为0。其他式也可逐一验证。 3、函数展开成傅里叶级数:  先把傅里叶级数表示为下式,即⑥式:    对⑥式从[-π,π]积分,得:  

8、   这就求得了第一个系数a0的表达式,即最上边傅里叶级数公式里的②式。接下来再求an和bn的表达式。用cos(kωt)乘⑥式的二边得:    至此,已经求得傅里叶级数中各系数的表达式,只要这些积分都存在,那么⑥式等号右侧所表示的傅里叶级数就能用来表达原函数f(t)。上述过程就是整个傅里叶级数的推导过程。事实上,如果能够写出⑥式,不难求出各个系数的表达式,关键是人们不会想到一个周期函数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。