常见辅助线的添加

常见辅助线的添加

ID:14106660

大小:275.50 KB

页数:6页

时间:2018-07-26

常见辅助线的添加_第1页
常见辅助线的添加_第2页
常见辅助线的添加_第3页
常见辅助线的添加_第4页
常见辅助线的添加_第5页
资源描述:

《常见辅助线的添加》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、中考数学几何部分常见辅助线的添加一、三角形中常见辅助线的添加1.与角平分线有关的ⅰ可向两边作垂线。ⅱ可作平行线,构造等腰三角形ⅲ在角的两边截取相等的线段,构造全等三角形2.与线段长度相关的ⅰ截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可ⅱ补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可ⅲ倍长中线:题目中如果出现了三角形

2、的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。ⅳ遇到中点,考虑中位线或等腰等边中的三线合一。3.与等腰等边三角形相关的ⅰ考虑三线合一ⅱ旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转二、四边形特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.1、和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.ⅰ.利用一组对边平行且相等构造平

3、行四边形ⅱ.利用两组对边平行构造平行四边形ⅲ.利用对角线互相平分构造平行四边形2、和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.ⅰ.作菱形的高;ⅱ.连结菱形的对角线.3、与矩形有辅助线作法和矩形有关的题型一般有两种:ⅰ.计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;ⅱ.证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.4、与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中

4、心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.5、与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形;(2)作梯形的高,构造矩形和直角三角形;(3)作一对角线的平行线,构造直角三角形和平行四边形;(4)延长两腰构成三角形;(5)作两腰的平行线等.三、圆1.遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。作用:①利用垂径定理;②利用圆心角

5、及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。2.遇到有直径时常常添加(画)直径所对的圆周角。作用:利用圆周角的性质得到直角或直角三角形。 3.遇到90度的圆周角时常常连结两条弦没有公共点的另一端点。作用:利用圆周角的性质,可得到直径。4.遇到有切线时(1)常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。 (2)常常添加连结圆上一点和切点作用:可构成弦切角,从而利用弦切角定理。5.遇到证明某一直线是圆的切线时(1)若直线和

6、圆的公共点还未确定,则常过圆心作直线的垂线段。作用:若OA=r,则l为切线。(2)若直线过圆上的某一点,则连结这点和圆心(即作半径)作用:只需证OA⊥l,则l为切线。(3)有遇到圆上或圆外一点作圆的切线6.遇到三角形的内切圆时连结内心到各三角形顶点,或过内心作三角形各边的垂线段。作用:利用内心的性质,可得:① 内心到三角形三个顶点的连线是三角形的角平分线;② 内心到三角形三条边的距离相等。7.遇到三角形的外接圆时,连结外心和各顶点作用:外心到三角形各顶点的距离相等。考点1.三角形:例1如图,AB=CD,E为BC中点,∠BAC=∠

7、BCA,求证:AD=2AE。ABECD例2如图,AB>AC,∠1=∠2,求证:AB-AC>BD-CD。12ACDB例3如图9—5,设O是正三角形ABC内一点,已知∠AOB=115°,∠BOC=125°。求以线段OA,OB,OC为边构成的三角形的各角。图9—5BACO【举一反三】1、如图,AB=6,AC=8,D为BC的中点,求AD的取值范围。ABCD682、如图,BC>BA,BD平分∠ABC,且AD=CD,求证:∠A+∠C=180。BDCA考点2.四边形:例5如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是

8、平行四边形.求证:OE与AD互相平分.例6如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.例7如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求PD的长.【举一反三】1.如图2,在△ABC中,E、F为AB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。