毕业论文 导数在经济学中的应用

毕业论文 导数在经济学中的应用

ID:14072929

大小:298.50 KB

页数:16页

时间:2018-07-25

毕业论文 导数在经济学中的应用_第1页
毕业论文 导数在经济学中的应用_第2页
毕业论文 导数在经济学中的应用_第3页
毕业论文 导数在经济学中的应用_第4页
毕业论文 导数在经济学中的应用_第5页
资源描述:

《毕业论文 导数在经济学中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、广东商学院数学与计算科学学院导数在经济学中的应用1引言对经济学家来说,对其经济环节进行定量分析是非常必要的,而将数学作为分析工具,不仅可以给企业经营者提供客观、精确的数据,而且在分析的演绎和归纳过程中,可以给企业经营者提供新的思路和视角,也是数学应用性的具体体现[1]。因此,在当今国内外,越来越多地应用数学知识,使经济学走向了定量化、精密化和准确化。导数的概念是从良多现实的科学问题抽象而发生的,在经济剖析、经济抉择妄想、经济打点中,有着普遍的应用意义[2]。其作为数学剖析课程中最主要的根基概念之一,反映了一个变量对另一个变量的转变率。在经济学中,也存在转变率问题,如:边际问题和弹性问题

2、。运用导数可以对经济活动中的实际问题进行边际分析、需求弹性分析和最值分析,从而为企业经营者科学决策提供量化依据。导数在经济领域中的应用非常之泛,其中“边际”和“弹性”是导数在经济分析应用中的两个重要概念。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,而导数是高等数学中的重要概念,是经济分析的重要工具。把经济活动中一些现象归纳到数学领域中,用数学知识进行解答,对很多经营决策起了非常重要的作用。数学在现代经济学中的作用越来越重要,导数作为高等数学中的一个重要概念,是经济学应用的一个重要工具[3]。导数在经济学中有许多应用,其中边际分析、弹性分析是导数在经济学中的两个重要应

3、用。如今许多企业在判断一项经济活动对企业的利弊时,仅仅依据它的全部成本。而我认为还应当依据它所引起的边际收益与边际成本的比较。在讨论经济问题时绝对数分析问题常常被作为首要因素考虑。我认为应当进一步研究相对变化率。总而言之,当代研究文学中分别研究了弹性和边际函数对经济的影响,缺乏从总体上深入研究经济过程中每个环节中导数的应用情况。在商品经济活动中进行编辑分析和弹性分析是非常重要的,导数作为边际分析与弹性分析的工具,可以为企业决策者做出合理的决策。在此我想用导数作为分析工具,对每个经济环节进行定量分析。通过研究成本所引起的边际收益与边际成本的的比较,分析绝对数相对变化率的经济问题,特别具体

4、分析因缺乏弹性的商品和富有弹性的商品的价格变动所产生的影响。同时将弹性分析与边际分析有机结合,衡量出如何确定最优的价格,获得最大的利润。从而帮助企业做出更精明的决策,为其提供精确的数值和创新思路。导数的概念:设函数y=f(x)在点的某个邻域内有定义,当自变量x在点处取得增量(点+仍在该邻域内)时,相应地函数y取得增量=f(+)-f();如果与之比当0时的极限存在,则称函数y=f(x)在点15广东商学院数学与计算科学学院导数在经济学中的应用处可导,并称这个极限为函数y=f(x)在点处的导数,记为f'(),即。若函数y=f(x)在某区间内每一点都可导,则称y=f(x)在该区间内可导,记f'

5、(x)为y=f(x)在该区间内的可导函数(简称导数)。DpQp1Q1p2Q201经济分析中常用的函数2.1需求函数与供给函数SPQP2Q1P1Q20需求曲线的特征:1、因变量Q放在横轴,而自变量价格p放在纵轴2、需求曲线的斜率为负。3、需求曲线不会凹向原点图1需求曲线(1)需求函数。作为市场上的一种商品,其需求量受到很多因素影响,如商品的市场价格、消费者的喜好等。为了便于讨论我们先不考虑其他因素,假设商品的需求量尽受市场价格的影响,即Q表示某种商品的需求量,P表示此种商品的价格,则用Q=f(P)表示对某种商品的需求函数。例如,某空调的价格从3000元/台降到2000元/台时,相应的需求

6、量就从600台增到1000台,显然需求是和价格相关的一个变量。一般来说,对某种商品的需求量Q随价格减少而增加,随价格增加而减少,所以需求函数是单调减少的函数(如图1)。图2供给曲线供给曲线的特征:1、因变量Q放在横轴,而自变量价格p放在纵轴2、供给曲线的斜率为正且凸向原点(2)供给函数。站在卖方的立场上,设Q表示对某种商品的供给量,P表示此种商品的价格,则用Q=F(P)表示某种商品的供给函数。一般来说,作为卖方,对某种商品的供给量Q是随价格P的增加而增加,随价格P的减少而减少,所以供给函数是单调增加的函数(如图2)。15广东商学院数学与计算科学学院导数在经济学中的应用2.2成本函数与平

7、均成本函数(1)成本函数。产品的成本一般有两类:一类随产品的数量变化,如需要的劳动力,消耗的原料等;这种生产成本称为可变成本。另一类成本无论生产水平如何都固定不变,如房屋设备的折旧费、保险费等,称为固定成本。设Q为某种产品的产量,C为生产此种产品的成本,生产每个单位产品的成本为a,固定成本为,则成本函数为C=C(Q)=aQ+。(2)平均成本函数。用表示每单位的平均成本函数[2]。2.3价格函数、收入函数和利润函数(1)价格函数。一般来说,价格是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。