等腰(边)三角形的典型题强化训练(含答案)

等腰(边)三角形的典型题强化训练(含答案)

ID:13842804

大小:883.00 KB

页数:31页

时间:2018-07-24

等腰(边)三角形的典型题强化训练(含答案)_第1页
等腰(边)三角形的典型题强化训练(含答案)_第2页
等腰(边)三角形的典型题强化训练(含答案)_第3页
等腰(边)三角形的典型题强化训练(含答案)_第4页
等腰(边)三角形的典型题强化训练(含答案)_第5页
资源描述:

《等腰(边)三角形的典型题强化训练(含答案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、等腰(边)三角形的典型题强化训练30等腰(边)三角形的典型题强化训练 一.选择题(共1小题)1.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD②CN=CM③MN∥AB其中正确结论的个数是(  ) A.0B.1C.2D.3 二.解答题(共29小题)2.(2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线

2、方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由. 3.(2012•牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+A

3、C•PF=AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH= _________ .点P到AB边的距离PE= _________ .30 4.(2011•梅州)如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.(1)当△APC与△

4、PBD的面积之和取最小值时,AP= _________ ;(直接写结果)(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动面变化?请说明理由;(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明) 5.(2011•绍兴)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况•探索结论当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE _________ DB(填“>”,

5、“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE _________ DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)(3)拓展结论,设计新题30在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果). 6.(2010•衡阳)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE. 7.(2010•贵港)如图所示,在△ABC中,A

6、B=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD(2)若CE:AC=1:5,BC=10,求BP的长. 8.(2009•宜昌)已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.(1)求证:AB=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由. 9.(2009•绍兴)如图,在△ABC中,AB=AC,∠BAC=40°,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.

7、(1)求∠DBC的度数;(2)求证:BD=CE.30 10.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)线段AD与BE有什么关系?试证明你的结论.(2)求∠BFD的度数. 11.(2009•本溪)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= _________ 度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC

8、上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。