数值分析上机实验指导书

数值分析上机实验指导书

ID:13826746

大小:1.15 MB

页数:37页

时间:2018-07-24

数值分析上机实验指导书_第1页
数值分析上机实验指导书_第2页
数值分析上机实验指导书_第3页
数值分析上机实验指导书_第4页
数值分析上机实验指导书_第5页
资源描述:

《数值分析上机实验指导书》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、“数值计算方法”上机实验指导书实验一误差分析实验1.1(病态问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。问题提出:考虑一个高次的代数多项式显然该多项式的全部根为1,2,…,20共计2

2、0个,且每个根都是单重的。现考虑该多项式的一个扰动其中是一个非常小的数。这相当于是对(1.1)中的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。实验内容:为了实现方便,我们先介绍两个MATLAB函数:“roots”和“poly”。其中若变量a存储n+1维的向量,则该函数的输出u为一个n维的向量。设a的元素依次为,则输出u的各分量是多项式方程的全部根;而函数的输出b是一个n+1维向量,它是以n维向量v的各分量为根的多项式的系数。可见“roots”和“poly”是

3、两个互逆的运算函数。37上述简单的MATLAB程序便得到(1.2)的全部根,程序中的“ess”即是(1.2)中的。实验要求:(1)选择充分小的ess,反复进行上述实验,记录结果的变化并分析它们。如果扰动项的系数很小,我们自然感觉(1.1)和(1.2)的解应当相差很小。计算中你有什么出乎意料的发现?表明有些解关于如此的扰动敏感性如何?(2)将方程(1.2)中的扰动项改成或其它形式,实验中又有怎样的现象出现?(3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将方程(1.2)写成展开的形式,同时将方程的解x看成

4、是系数的函数,考察方程的某个解关于的扰动是否敏感,与研究它关于的导数的大小有何关系?为什么?你发现了什么现象,哪些根关于的变化更敏感?思考题一:(上述实验的改进)在上述实验中我们会发现用roots函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考MATLAB的帮助。思考题二:(二进制产生的误差)用MATLAB计算。结果居然有误差!因为从十进制数角度分析,这一计算应该是准确的。实验反映了计算机内部的二进制本质

5、。思考题三:(一个简单公式中产生巨大舍入误差的例子)可以用下列式子计算自然对数的底数这个极限表明随着n的增加,计算e值的精度是不确定的。现编程计算与exp(1)值的差。n大到什么程度的时候误差最大?你能解释其中的原因吗?37相关MATLAB函数提示:poly(a)求给定的根向量a生成其对应的多项式系数(降序)向量roots(p)求解以向量p为系数的多项式(降序)的所有根poly2sym(p)将多项式向量p表示成为符号多项式(降序)sym(arg)将数字、字符串或表达式arg转换为符号对象symsarg1arg2argk

6、将字符arg1,arg2,argk定义为基本符号对象solve('eq1')求符号多项式方程eq1的符号解37实验二插值法实验2.1(多项式插值的振荡现象)问题提出:考虑一个固定的区间上用插值逼近一个函数。显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。我们自然关心插值多项式的次数增加时,是否也更加靠近被逼近的函数。龙格(Runge)给出一个例子是极著名并富有启发性的。设区间[-1,1]上函数实验内容:考虑区间[-1,1]的一个等距划分,分点为则拉格朗日插值多项式为其中的是n次拉格朗日插值基函数。实验要求:(

7、1)选择不断增大的分点数目n=2,3….,画出原函数f(x)及插值多项式函数在[-1,1]上的图像,比较并分析实验结果。(2)选择其他的函数,例如定义在区间[-5,5]上的函数重复上述的实验看其结果如何。(3)区间[a,b]上切比雪夫点的定义为以为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果。实验2.2(样条插值的收敛性)问题提出:多项式插值是不收敛的,即插值的节点多,效果不一定就好。对样条函数插值又如何呢?理论上证明样条插值的收敛性是比较困难的,但通过本实验可以验证这一理论结果。实验内容:请按一定的规则分别

8、选择等距或者非等距的插值节点,并不断增加插值节点的个数。考虑实验2.1中的函数或选择其他你有兴趣的函数,可以用MATLAB的函数“spline”作此函数的三次样条插值。实验要求:37(1)随节点个数增加,比较被逼近函数和样条插值函数误差的变化情况。分析所得结果并与拉格朗日多项式插值比较。(2)样条插值的思想是早产生于工业部门。作为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。