氩弧熔覆技术制备tic―tib复合陶瓷涂层力学性能的研究

氩弧熔覆技术制备tic―tib复合陶瓷涂层力学性能的研究

ID:13825144

大小:31.50 KB

页数:9页

时间:2018-07-24

氩弧熔覆技术制备tic―tib复合陶瓷涂层力学性能的研究_第1页
氩弧熔覆技术制备tic―tib复合陶瓷涂层力学性能的研究_第2页
氩弧熔覆技术制备tic―tib复合陶瓷涂层力学性能的研究_第3页
氩弧熔覆技术制备tic―tib复合陶瓷涂层力学性能的研究_第4页
氩弧熔覆技术制备tic―tib复合陶瓷涂层力学性能的研究_第5页
资源描述:

《氩弧熔覆技术制备tic―tib复合陶瓷涂层力学性能的研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、氩弧熔覆技术制备TiC―TiB2复合陶瓷涂层力学性能的研究  摘要:采用以钨极为电极的氩弧熔覆技术,将钛铁粉、B4C粉为主要原料的合金粉末预置在钢基体表面熔覆,进而得到原位合成的TiC-TiB2复合陶瓷涂层。采用正交试验优化氩弧熔覆工艺参数,通过布氏硬度仪、洛氏硬度仪检测耐磨涂层的硬度,使用磨损试验机测试涂层的耐磨性。结果表明,TIG焊的最佳工艺参数为:电流强度145A,氩气流量6L/min,焊接速度120mm/min;熔覆涂层表面及熔合线硬度明显高于基体,加入Cr、Ni等合金粉末,将提高复合材料熔覆涂层表面及熔合线附近区域的硬度;基体内并不含有硬质相以抵抗磨粒

2、磨损,氩弧熔覆技术制备的陶瓷涂层能显著提高材料的耐磨性[1-4]。  关键词:氩弧熔覆;TiC-TiB2;陶瓷涂层;硬度  1引言  金属的磨损与失效是零部件损坏的主要原因,其一般的损坏部分多集中在零件表面,因此对于金属表面的防护及修复成为提高产品使用效率、降低能源材料消耗的关键问题。据不完全统计,我国每年因材料更换所引起的费用高达数千亿美元,其中以大中型零部件为主。采用表面熔覆涂层不仅对金属表面进行了有效的防护,更增强了复合材料的硬度以及耐磨性,是一种经济环保、性能可靠的防?o技术[5]。  目前,针对零部件表面的耐磨改性主要采用喷涂,等离子熔覆或激光熔覆等,

3、它们都能在很大程度上对金属基体进行有效防护,但成本过高,不适合于工业生产[6]。而采用氩弧熔覆技术的方法,应用的设备简单,操作方便,易于控制,在普通的金属基表面熔覆一层或多层稳定的复合涂层,不仅增强了金属表面的性能,更有效降低了成本。熔覆过程中,陶瓷相的加入一般有两种途径,一是陶瓷相的直接加入,二是在金属基体上原位合成陶瓷相。采用第二种原位合成的方法避免了直接加入而引起的裂纹、脱落等缺陷,得到的复合材料界面洁净、力学性能稳定,与金属基体结合良好。本文研究的目的在于通过氩弧熔覆技术将涂覆于金属基体表面的合金粉末熔化,在基体表面原位合成Fe基TiC-TiB2复合陶瓷

4、相涂层,进而探讨复合涂层的力学性能。  2制备TiC-TiB2复合涂层工艺探究  2.1原位自生合成技术  原位自生合成技术应用于氩弧熔覆焊接之前,它是近年来发展起来的一种方法,一经应用便广受关注。通过金属表面颗粒的影响进而增强复合材料的方法主要有两种:一种是通过外加颗粒,另一种即为原位自生合成。通过外加的方法虽然使增强体与基体之间的自由度增大,但由于外加增强体在理化性质上存在一定的不相容性,使得工艺变得复杂,成本也相应增加。而原位反应合成因其第二相与金属基体能够有理想的原位匹配,且界面无杂质对复合材料污染,所以能显著提高材料的热力学稳定性,改善材料界面的结合状

5、态。同时原位合成相对非原位合成能够有效简化工艺,降低操作难度,进而使得工艺成本显著下降[7]。  本文采取原位自生合成的方法,将所需的两种固态粉末与粉末状基体按照一定比例进行混合,操作过程中需将混合粉末进行充分压实,干燥去气,为生成增强体颗粒,需将干燥去气后的压坯块置于温度高于基体熔点的环境下快速加热,使得在熔体介质中的两种混合粉末发生放热反应,然后通过二次成型即挤压成型得到待焊接试样。  原位合成具有一系列能使复合材料具有良好性能的优点,它能避免第二相不均匀分散的问题,同时能够解决外加颗粒方法中未能避免的界面结合不牢、理化性质不相容等问题[8-9]。  2.2

6、氩弧熔覆技术  2.2.1氩弧熔覆技术的基本原理  氩弧熔覆是利用电弧电离加热所产生的热量将涂覆于金属表面的合金粉末熔化,以使得合金粉末涂层与金属基体呈牢固的冶金结合的技术。氩弧熔覆技术所用电极为铈―钨极,其原理与采用金属钨做电极的原理相同,采用纯度为99.99%的工业氩气作为保护气,有效地保护了电极、熔覆区域以及金属基体,减少了有益成份的烧损以及在很大程度上避免了空气对熔覆过程中金属的有害影响[10]。其原理示意图如图1所示。  2.2.2钨极氩弧焊工艺  钨极氩弧焊(又称TIG焊),是在利用氩气作为保护气的条件下,以钨或其合金作电极对母材及复合材料进行电弧加

7、热,以使其熔化焊接的技术,其间充填材可选择添加或不添加[11]。  焊接过程需要在一定热量下进行,钨极氩弧焊利用气体介质电离所产生的电弧热对材料进行熔化,此过程中阴极压降低,其在放电过程中,电流密度较大,因此加热速度较其他方法快,同时在局部发生融化后又以一定的速度冷却[11]。电弧可分为三个区域,即电弧各自与电源正负两极相连所对应的阳极区、阴极区以及阴阳两极间的弧柱区。热量的传递过程则包含辐射,对流以及热传递三种,热源与焊件之间的传递为辐射与对流,而母材受热后的热量传播则为热传递。  焊接时熔化的母材与焊接金属组成的具有一定形状的液体金属称之为熔池,它的形状,尺

8、寸等参数对于熔池中的合金

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。