电子设计实验测试

电子设计实验测试

ID:13790639

大小:55.50 KB

页数:3页

时间:2018-07-24

电子设计实验测试_第1页
电子设计实验测试_第2页
电子设计实验测试_第3页
资源描述:

《电子设计实验测试》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、逻辑门电路实现基本和常用逻辑运算的电子电路,叫逻辑门电路。在数字电路中,所谓“门”就是只能是实现基本逻辑关系的电路。最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门、和非门实现“与”运算的叫与门,实现“或”运算的叫或门,实现“非”运算的叫非门,也叫做反相器,等等。逻辑门是在集成电路(也称:集成电路)上的基本组件。逻辑门可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门也可以将门电路的所有器件及连接导线制作在同一块半导体基片上,构成集成逻辑门电路。简单的逻辑门可由晶体管组成。这些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。逻辑门可以

2、组合使用实现更为复杂的逻辑运算。逻辑门电路是数字电路中最基本的逻辑元件。所谓门就是一种开关,它能按照一定的条件去控制信号的通过或不通过。门电路的输入和输出之间存在一定的逻辑关系(因果关系),所以门电路又称为逻辑门电路。基本逻辑关系为“与”、“或”、“非”三种。逻辑门电路按其内部有源器件的不同可以分为三大类。第一类为双极型晶体管逻辑门电路,包括TTL、ECL电路和I2L电路等几种类型;第二类为单极型MOS逻辑门电路,包括NMOS、PMOS、LDMOS、VDMOS、VVMOS、IGT等几种类型;第三类则是二者的组合BICMOS门电路。常用的是CMOS逻辑门电路。CMOS逻辑门电路功耗极低,成

3、本低,电源电压范围宽,逻辑度高,抗干扰能力强,输入阻抗高,扇出能力强。逻辑门电路按其集成度又可分为:SSI(小规模集成电路,每片组件包含10~20个等效门)。MAI(中规模集成电路,每个组件包含20~100个等效门)。LAI(大规模集成电路,每组件内含100~1000个等效门)。VLSI(超大规模集成电路,每片组件内含1000个以上等效门)。常用的MOS门电路有NMOS,PMOS,CMOS,LDMOS,VDMOS等5种。用N沟通增强型场效应管构成的逻辑电路称为NMOS电路;用P沟通场效应管构成的逻辑电路称为PMOS电路;CMOS电路则是NMOS和PMOS的互补型电路,用横向双扩散MOS管

4、构成的逻辑电路称为LDMOS电路;用垂直双扩散MOS管构成二逻辑电路称为VDMOS电路。ECL(EmitterCoupledLogic)即发射极耦合逻辑电路,也称电流开关型逻辑电路。但是由于单元门的开关管对是轮流导通的,对整个电路来讲没有“截止”状态,所以电路的功耗较大。逻辑门电路使用注意事项电源电压有两个电压:额定电源电压和极限电源电压,额定电源电压指正常工作时电源电压的允许大小:TTL电路为5V±5%(54系列5V±10%);CMOS电路为3~15V(4000B系列3~18V)。极限工作电源电压指超过该电源电压器件将永久损坏。TTL电路为7V;4000系列CMOS电路为18VMOS门

5、电路由单极型MOS管构成的门电路称为Mos门电路。MOS电路具有制造工艺简单、功耗低、集成度高、电源电压使用范围宽、抗干扰能力强等优点,特别适用于大规模集成电路。MOS门电路按所用MOS管的不同可分为三种类型:第一种是由PMOS管构成的PMOS门电路,其工作速度较低;第二种是由NMOS管构成的NMOS门电路,工作速度比PMOS电路要高,但比不上TTL电路;第三种是由PMOS管和NMOS管两种管子共同组成的互补型电路,称为CMOS电路,CMOS电路的优点突出,其静态功耗极低,抗干扰能力强,工作稳定可靠且开关速度也大大高于NMOS和PMOS电路,故得到了广泛应用。MOS管主要参数  1、开启

6、电压VT  ·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;  ·标准的N沟道MOS管,VT约为3~6V;  ·通过工艺上的改进,可以使MOS管的VT值降到2~3V。  2、直流输入电阻RGS  ·即在栅源极之间加的电压与栅极电流之比  ·这一特性有时以流过栅极的栅流表示  ·MOS管的RGS可以很容易地超过1010Ω。  3、漏源击穿电压BVDS  ·在VGS=0(增强型)的条件下,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS  ·ID剧增的原因有下列两个方面:(1)漏极附近耗尽层的雪崩击穿,(2)漏源极间的穿通击穿。  ·有些

7、MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID4、栅源击穿电压BVGS  ·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。  5、低频跨导gm  ·在VDS为某一固定数值的条件下,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导  ·gm反映了栅

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。