欢迎来到天天文库
浏览记录
ID:13732176
大小:2.29 MB
页数:42页
时间:2018-07-24
《中考数学圆精讲及习题(附答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中考数学《圆》知识详解知识点一、圆的定义及有关概念[来源:学&科&网Z&X&X&K]1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行
2、于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。在同圆或等圆中,能够重合的两条弧叫做等弧。例P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为_______.解题思路:圆内最长的弦是直径,最短的弦是和OP垂直的弦,答案:10cm,8cm.知识点二、平面内点和圆的位置
3、关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内当点在圆外时,d>r;反过来,当d>r时,点A在圆外。当点在圆上时,d=r;反过来,当d=r时,点B在圆上。当点在圆内时,d<r;反过来,当d<r时,点C在圆内。例如图,在中,直角边,,点,分别是,的中点,以点为圆心,的长为半径画圆,则点在圆A的_________,点在圆A的_________.解题思路:利用点与圆的位置关系,答案:外部,内部练习:在直角坐标平面内,圆的半径为5,圆心的坐标为.试判断点与圆的位置关系.-42-答案:点在圆O上.知识点三、圆的基本性质1、圆是轴对称图形,其对称轴是任意一条过圆心的直线。2、垂径定
4、理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①是直径②③④弧弧⑤弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。即:在⊙中,∵∥∴弧弧3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。4、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相
5、等,那么它们所对应的其余各组量都分别相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①;②;③;④弧弧5、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。[来源:学科即:∵和是弧所对的圆心角和圆周角∴6、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙中,∵、都是所对的圆周角∴推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙中,∵是直径或∵∴∴是直径-42-推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即
6、:在△中,∵∴△是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。例1如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是()A.4cmB.6cmC.8cmD.10cm解题思路:在一个圆中,若知圆的半径为R,弦长为a,圆心到此弦的距离为d,根据垂径定理,有R2=d2+()2,所以三个量知道两个,就可求出第三个.答案C例2、如图,A、B、C、D是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A、60°B、45°C、30°D、15°解题思路:运用圆周角与圆心角的关系定理,答案:A例3、如图1和图2,MN是⊙
7、O的直径,弦AB、CD相交于MN上的一点P,∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.(1)(2)解题思路:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1)AB=CD理由:过O作OE、OF分别垂直于AB、CD,垂足分别为
此文档下载收益归作者所有