专题5.2.1:立体几何-客观题-真题

专题5.2.1:立体几何-客观题-真题

ID:13702665

大小:541.50 KB

页数:6页

时间:2018-07-24

专题5.2.1:立体几何-客观题-真题_第1页
专题5.2.1:立体几何-客观题-真题_第2页
专题5.2.1:立体几何-客观题-真题_第3页
专题5.2.1:立体几何-客观题-真题_第4页
专题5.2.1:立体几何-客观题-真题_第5页
资源描述:

《专题5.2.1:立体几何-客观题-真题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2010年高考数学试题分类汇编——立体几何(2010陕西文数)8.若某空间几何体的三视图如图所示,则该几何体的体积是[B](A)2(B)1(C)(D)解析:本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱所以其体积为(2010辽宁文数)(11)已知是球表面上的点,,,,,则球的表面积等于(A)4(B)3(C)2(D)解析:选A.由已知,球的直径为,表面积为(2010全国卷2文数)(11)与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点(A)有且只有1个(B)有且只有2个(C)有且只有3个(D)有无数个【解析】D:本题考查了空

2、间想象能力∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,(2010安徽文数)(9)一个几何体的三视图如图,该几何体的表面积是(A)372(B)360(C)292(D)2809.B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。.【方法技巧】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。(2010重庆文数)(9)到两互相垂直的异面直线的

3、距离相等的点(A)只有1个(B)恰有3个(C)恰有4个(D)有无穷多个解析:放在正方体中研究,显然,线段、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D亦可在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等(2010浙江文数)(8)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)cm3(B)cm3(C)cm3(D)cm3解析:选B,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题(2010山东文数)(4)在空间,下列命题正确的是A.平行直线的平行投影重合B.平行于同一直线

4、的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行答案:D(2010北京文数)(8)如图,正方体的棱长为2,动点E、F在棱上。点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,E=y(x,y大于零),则三棱锥P-EFQ的体积:(A)与x,y都有关;(B)与x,y都无关;(C)与x有关,与y无关;(D)与y有关,与x无关;答案:C(2010北京文数)(5)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:答案:C(2010广东文数)(2010福建文数)3.若一个底面是正三角形的三棱柱的

5、正视图如图所示,则其侧面积等于()A.B.2C.D.6【答案】D【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,选D.【命题意图】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。(2010全国卷1文数)(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)(B)(C)(D)12.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB

6、与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故(2010全国卷1文数)(9)正方体-中,与平面所成角的余弦值为(A)(B)(C)(D)ABCDA1B1C1D1O9.D【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB1//DD1,所以B与平面AC所成角和DD1与平面AC所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,则,.所以,记DD1与平面AC所成角为,则,所以.【解析2】设上下底面的中心分别为;与平面

7、AC所成角就是B与平面AC所成角,(2010四川文数)(12)半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点、,那么、两点间的球面距离是高^考#资*源^网(A)(B)(C)(D)解析:由已知,AB=2R,BC=R,故tan∠BAC=cos∠BAC=w_ww.k#s5_u.co*m连结OM,则△OAM为等腰三角形AM=2AOcos∠BAC=,同理AN=,且MN∥CD而AC=R,CD=R故MN:CD=AN:ACÞMN=,连结OM、ON,有OM=ON=R于是cos∠MON=所以M、N两点间的球面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。