资源描述:
《届高考数学一轮复习第二章函数导数及其应用第讲函数与方程精选教案理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019版高考数学一轮复习第二章函数导数及其应用精选教案第11讲 函数与方程考纲要求考情分析命题趋势1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似解.2017·江苏卷,142016·天津卷,81.函数的零点问题是命题热点,经常考查函数零点存在的区间和零点个数的判断,难度不大.2.函数零点性质的应用主要是利用函数的零点个数求参数的范围.分值:5~8分1.函数的零点(1)函数零点的定义对于函数y=f(x),我们把使__f(x)=0__成立的实数x叫做函数
2、y=f(x)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与__x轴__有交点⇔函数y=f(x)有__零点__.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有__f(a)·f(b)<0__,那么函数y=f(x)在区间__(a,b)__内有零点,即存在c∈(a,b),使得__f(c)=0__,这个__c__也就是f(x)=0的根.122019版高考数学一轮复习第二章函数导数及其应用精选教案2.二次函数y=ax2+bx+c(a>0)的零点Δ>0Δ=0Δ<0二次
3、函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数__两个____一个__无3.二分法(1)二分法的定义对于在区间[a,b]上连续不断且__f(a)·f(b)<0__的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__一分为二__,使区间的两个端点逐步逼近__零点__,进而得到零点近似值的方法叫做二分法.(2)用二分法求函数f(x)零点近似值的步骤第一步,确定区间[a,b],验证__f(a)·f(b)<0__,给定精确度ε.第二步,求区间(a,b)的中点x1.第三步,计算f(x1)
4、:①若__f(x1)=0__,则x1就是函数的零点;②若__f(a)·f(x1)<0__,则令b=x1(此时零点x0∈(a,x1));③若__f(x1)·f(b)<0__,则令a=x1(此时零点x0∈(x1,b)).第四步,判断是否达到精确度ε,即若
5、a-b
6、<ε,则得到零点近似值a(或b).否则重复第二、第三、第四步.4.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.1
7、.思维辨析(在括号内打“√”或“×”).(1)函数f(x)=x2-1的零点是(-1,0)和(1,0).( × )(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0.( × )(3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点. ( √ )(4)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b122019版高考数学一轮复习第二章函数导数及其应用精选教案]上有且只有一个零点.( √ )解析 (1)错误.函数f(x)=x2-1的零点为-1和1,而并非
8、其与x轴的交点(-1,0)与(1,0).(2)错误.函数f(x)=x2-x在(-1,2)上有两个零点,但f(-1)·f(2)>0.(3)正确.当b2-4ac<0时,二次函数图象与x轴无交点,从而二次函数没有零点.(4)正确.由已知条件,数形结合得f(x)与x轴在区间[a,b]上有且仅有一个交点,故正确.2.下列函数中,既是偶函数又存在零点的是( A )A.y=cosx B.y=sinxC.y=lnx D.y=x2+1解析 y=cosx是偶函数,且存在零点;y=sinx是奇函数;y=lnx既不是奇函数也不是偶函数;y=x2+1是偶函数,但不
9、存在零点.故选A.3.函数f(x)=2x+x3-2在区间(0,1)内的零点个数是( B )A.0 B.1 C.2 D.3解析 函数f(x)=2x+x3-2显然是一个单调递增且是连续的函数,同时f(0)·f(1)=(-1)×1=-1<0.由函数零点存在性定理可知,函数在(0,1)内必存在唯一一个零点,故选B.4.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为( C )x-10123ex0.3712.727.3920.09x+212345A.(-1,0) B.(0,1) C.(1,2) D.(2,3)解析
10、 设函数f(x)=ex-x-2,从表中可以看出f(1)·f(2)<0,因此方程ex-x-2=0的一个根所在的区间为(1,2).5.用二分