ccd的工作原理及其光谱特性

ccd的工作原理及其光谱特性

ID:13509482

大小:67.50 KB

页数:4页

时间:2018-07-23

ccd的工作原理及其光谱特性_第1页
ccd的工作原理及其光谱特性_第2页
ccd的工作原理及其光谱特性_第3页
ccd的工作原理及其光谱特性_第4页
资源描述:

《ccd的工作原理及其光谱特性》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、CCD的工作原理及其光谱特性     1  CCD的基本工作原理    CCD(ChargedCoupled    Device,电荷耦合器件)是由一系列排得很紧密的MOS电容器组成。它的突出特点是以电荷作为信号,实现电荷的存储和电荷的转移。因此,CCD工作过程的主要问题是信号电荷的产生、存储、传输和检测[1]。以下将分别从这几个方面讨论CCD器件的基本工作原理。    1.1MOS电容器    CCD是一种固态检测器,由多个光敏像元组成,其中每一个光敏像元就是一个MOS(金属—氧化物—半导体)电容器。但工作原理与MOS晶体管不同。    CCD中的MOS电容器的形成方法是这

2、样的[2]:在P型或N型单晶硅的衬底上用氧化的办法生成一层厚度约为100~150nm的SiO2绝缘层,再在SiO2表面按一定层次蒸镀一金属电极或多晶硅电极,在衬底和电极间加上一个偏置电压(栅极电压),即形成了一个MOS电容器(见图3—1)。        图3-1  MOS电容器栅极电压变化对耗尽层的影响    CCD一般是以P型硅为衬底,在这种P型硅衬底中,多数载流子是空穴,少数载流子是电子。在电极施加栅极电压VG之前,空穴的分布是均匀的,当电极相对于衬底施加正栅压VG时,在电极下的空穴被排斥,产生耗尽层,当栅压继续增加,耗尽层将进一步向半导体内延伸,这一耗尽层对于带负电荷

3、的电子而言是一个势能特别低的区域,因此也叫做“势阱”。    在耗尽状态时,耗尽区电子和空穴浓度与受主浓度相比是可以忽略不计的,但如正栅压VG进一步增加,界面上的电子浓度将随着表面势成指数地增长,而表面势又是随耗尽层宽度成平方率增加的。这样随着表面电势的进一步增加,在界面上的电子层形成反型层。而一旦出现反型层,MOS就认为处于反型状态(如图3—1所示)。显然,反型层中电子的增加和因栅压的增加的正电荷相平衡,因此耗尽层的宽度几乎不变。反型层的电子来自耗尽层的电子—空穴对的热产生过程。对于经过很好处理的半导体材料,这种产生过程是非常缓慢的。因此在加有直流电压的金属板上叠加小的交流

4、信号时,反型层中电子数目不会因叠有交流信号而变化。    1.2电荷存储    当一束光投射到MOS电容器上时,光子透过金属电极和氧化层,进入Si衬底,衬底每吸收一个光子,就会产生一个电子—空穴对,其中的电子被吸引到电荷反型区存储。从而表明了CCD存储电荷的功能。一个CCD检测像元的电荷存储容量决定于反型区的大小,而反型区的大小又取决于电极的大小、栅极电压、绝缘层的材料和厚度、半导体材料的导电性和厚度等一些因素。        QS(×10–8C/cm2)        图3—2  给定CCD参数时表面势VS与电荷QS的关系    图3—2表示了Si-SiO2的表面电势VS与

5、存储电荷QS的关系。曲线的直线性好,说明两者之间有良好的反比例线性关系,这种线性关系很容易用半导体物理中“势阱”的概念来描述。电子所以被加有栅极电压VG的MOS结构吸引到Si-SiO2的交接面处,是因为那里的势能最低。在没有反型层电荷时,势阱的“深度”与电极电压的关系恰如表面势VS与电荷QS的线性关系,如图3—3(a)所示。图3—3(b)为反型层电荷填充势阱时,表面势收缩。当反型层电荷足够多,使势阱被填满时,如图3—3©所示,此时                     表面势下降到不再束缚多余的电子,电子将产生“溢出”现象。UG=5VUG=10VUG=15V040812  

6、          16(a)空势阱  (b)填充1/3的势阱  ©全满势阱            图3—3  势阱    1.3电荷转移    为了便于理解在CCD中势阱电荷如何从一个位置移到另一个位置,取CCD中四个彼此靠得很近的电极来观察,见图3—4。图3—4  三相CCD中电荷的转移过程    假定开始时有一些电荷存储在偏压为10V的第二个电极下面的深势阱里,其他电极上均加有大于域值电压的较低电压(例如2V)。设图3—4(a)为零时刻(初始时刻),过t1时刻后,各电极上的电压变为如图3—4(b)所示,第二个电极仍保持为10V,第三个电极上的电压由2V变到10V,因这两

7、个电极靠得很紧(间隔只有几微米),他们各自的对应势阱将合并在一起。原来在第二个电极下的电荷变为这两个电极下的势阱所共有,如图3—4(b)和3—4(c)所示。若此后电极上的电压变为图3—4(d)所示,第二个电极电压由10V变为2V,第三个电极电压仍为10V,则共有的电荷转移到第三个电极下面的势阱中,如图3—4(e)。由此可见,深势阱及电荷包向右移动了一个位置。    通过将一定规则变化的电压加到CCD各电极上,电极下的电荷包就能沿半导体表面按一定方向移动。通常把CCD电极分为几组,每一组称为一相,并施加同

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。