欢迎来到天天文库
浏览记录
ID:12292415
大小:155.50 KB
页数:18页
时间:2018-07-16
《ccd的工作原理及其光谱特性》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、CCD的工作原理及其光谱特性 1 CCD的基本工作原理 CCD(ChargedCoupled Device,电荷耦合器件)是由一系列排得很紧密的MOS电容器组成。它的突出特点是以电荷作为信号,实现电荷的存储和电荷的转移。因此,CCD工作过程的主要问题是信号电荷的产生、存储、传输和检测[1]。以下将分别从这几个方面讨论CCD器件的基本工作原理。 1.1MOS电容器 CCD是一种固态检测器,由多个光敏像元组成,其中每一个光敏像元就是一个MOS(金属—氧化物—半导体)电容器。但工作原理与MOS晶体管不同。 CCD中的MOS电容器的形成方法是
2、这样的[2]:在P型或N型单晶硅的衬底上用氧化的办法生成一层厚度约为100~150nm的SiO2绝缘层,再在SiO2表面按一定层次蒸镀一金属电极或多晶硅电极,在衬底和电极间加上一个偏置电压(栅极电压),即形成了一个MOS电容器(见图3—1)。 图3-1 MOS电容器栅极电压变化对耗尽层的影响 CCD一般是以P型硅为衬底,在这种P型硅衬底中,多数载流子是空穴,少数载流子是电子。在电极施加栅极电压VG之前,空穴的分布是均匀的,当电极相对于衬底施加正栅压VG时,在电极下的空穴被排斥,产生耗尽层,当栅压继续增加,耗尽层将进一步向半导体内延伸,这一耗尽层对于带负
3、电荷的电子而言是一个势能特别低的区域,因此也叫做“势阱”。 在耗尽状态时,耗尽区电子和空穴浓度与受主浓度相比是可以忽略不计的,但如正栅压VG进一步增加,界面上的电子浓度将随着表面势成指数地增长,而表面势又是随耗尽层宽度成平方率增加的。这样随着表面电势的进一步增加,在界面上的电子层形成反型层。而一旦出现反型层,MOS就认为处于反型状态(如图3—1所示)。显然,反型层中电子的增加和因栅压的增加的正电荷相平衡,因此耗尽层的宽度几乎不变。反型层的电子来自耗尽层的电子—空穴对的热产生过程。对于经过很好处理的半导体材料,这种产生过程是非常缓慢的。因此在加有直流电压的金属板上叠加小
4、的交流信号时,反型层中电子数目不会因叠有交流信号而变化。 1.2电荷存储 当一束光投射到MOS电容器上时,光子透过金属电极和氧化层,进入Si衬底,衬底每吸收一个光子,就会产生一个电子—空穴对,其中的电子被吸引到电荷反型区存储。从而表明了CCD存储电荷的功能。一个CCD检测像元的电荷存储容量决定于反型区的大小,而反型区的大小又取决于电极的大小、栅极电压、绝缘层的材料和厚度、半导体材料的导电性和厚度等一些因素。 QS(×10–8C/cm2) 图3—2 给定CCD参数时表面势VS与电荷QS的关系 图3—2表示了Si-SiO2的表面电
5、势VS与存储电荷QS的关系。曲线的直线性好,说明两者之间有良好的反比例线性关系,这种线性关系很容易用半导体物理中“势阱”的概念来描述。电子所以被加有栅极电压VG的MOS结构吸引到Si-SiO2的交接面处,是因为那里的势能最低。在没有反型层电荷时,势阱的“深度”与电极电压的关系恰如表面势VS与电荷QS的线性关系,如图3—3(a)所示。图3—3(b)为反型层电荷填充势阱时,表面势收缩。当反型层电荷足够多,使势阱被填满时,如图3—3©所示,此时 表面势下降到不再束缚多余的电子,电子将产生“溢出”现象。UG=5VUG=10VUG=15V040
6、812 16(a)空势阱 (b)填充1/3的势阱 ©全满势阱 图3—3 势阱 1.3电荷转移 为了便于理解在CCD中势阱电荷如何从一个位置移到另一个位置,取CCD中四个彼此靠得很近的电极来观察,见图3—4。图3—4 三相CCD中电荷的转移过程 假定开始时有一些电荷存储在偏压为10V的第二个电极下面的深势阱里,其他电极上均加有大于域值电压的较低电压(例如2V)。设图3—4(a)为零时刻(初始时刻),过t1时刻后,各电极上的电压变为如图3—4(b)所示,第二个电极仍保持为10V,第三个电极上的电压由2V变到1
7、0V,因这两个电极靠得很紧(间隔只有几微米),他们各自的对应势阱将合并在一起。原来在第二个电极下的电荷变为这两个电极下的势阱所共有,如图3—4(b)和3—4(c)所示。若此后电极上的电压变为图3—4(d)所示,第二个电极电压由10V变为2V,第三个电极电压仍为10V,则共有的电荷转移到第三个电极下面的势阱中,如图3—4(e)。由此可见,深势阱及电荷包向右移动了一个位置。 通过将一定规则变化的电压加到CCD各电极上,电极下的电荷包就能沿半导体表面按一定方向移动。通常把CCD电极分为几组,每一组称为一相,并施加同
此文档下载收益归作者所有