欢迎来到天天文库
浏览记录
ID:13500426
大小:214.00 KB
页数:6页
时间:2018-07-23
《人教a版高中数学选修2-3同步检测第1章1.1第2课时分类加法计数原理与分步乘法计数原理的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人教A版高中数学选修2-3同步检测第一章计数原理1.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理的应用A级 基础巩固一、选择题1.植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有( )A.1×2×3B.2×3×4C.34D.43解析:完成这件事分三步.第一步,植第一棵树,有4种不同的方法;第二步,植第二棵树,有4种不同的方法;第三步,植第三棵树,也有4种不同的方法.由分步乘法计数原理得:N=4×4×4=43,故选D.答案:
2、D2.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为( )A.2B.4C.6D.8解析:分两类:第一类,公差大于0,有以下4个等差数列:①1,2,3,②2,3,4,③3,4,5,④1,3,5;第二类,6人教A版高中数学选修2-3同步检测公差小于0,也有4个.根据分类加法计数原理可知,可组成的不同的等差数列共有4+4=8(个).答案:D3.从集合{1,2,3}和{1,4,5,6}中各取1个元素作为点的坐标,则在直角坐标系中能确定不同点的个数为( )A.12B.11C.24D
3、.23解析:先在{1,2,3}中取出1个元素,共有3种取法,再在{1,4,5,6}中取出1个元素,共有4种取法,取出的2个数作为点的坐标有2种方法,由分步乘法计数原理知不同的点的个数有N=3×4×2=24(个).又点(1,1)被算了两次,所以共有24-1=23(个).答案:D4.已知x∈{2,3,7},y∈{-31,-24,4},则xy可表示不同的值的个数是( )A.1+1=2B.1+1+1=3C.2×3=6D.3×3=9解析:x,y在各自的取值集合中各选一个值相乘求积,这件事可分两步完成.第
4、一步,x在集合{2,3,7}中任取一个值有3种方法;第二步,y在集合{-31,-24,4}中任取一个值有3种方法.根据分步乘法计数原理知,不同值有3×3=9(个).答案:D5.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数的个数是( )A.20B.166人教A版高中数学选修2-3同步检测C.14D.12解析:因为四位数的每个位数上都有两种可能性(取2或3),其中四个数字全是2或3的不合题意,所以适合题意的四位数共有2×2×2×2-2=14(个).答案:C二、填空题6.3位旅客
5、投宿到1个旅馆的4个房间(每房间最多可住3人)有________种不同的住宿方法.解析:分三步,每位旅客都有4种不同的住宿方法,因而共有不同的方法4×4×4=43=64(种).答案:647.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理,选法有3×5=15(种);第二类,甲班选一名,丙班选一名,根据分步乘法计数原理,选法有3×2=6(种
6、);第三类,乙班选一名,丙班选一名,根据分步乘法计数原理,选法有5×2=10(种).综合以上三类,根据分类加法计数原理,不同选法共有15+6+10=31(种).答案:318.6人教A版高中数学选修2-3同步检测甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.解析:分三类.若甲在周一,则乙、丙的排法有4×3=12(种);若甲在周二,则乙、丙的排法有3×2=6(种);若甲在周三,则乙
7、、丙的排法有2×1=2(种).所以不同的安排方法共有12+6+2=20(种).答案:20三、解答题9.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血
8、,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,不同的选法有28+7+9+3=47(种).(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,不同的选法有28×7×9×3=5292(种).10.8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解:先排百位数字,从1,2,…,7共7个数字中选一个,有7种选法;再排十位数字,从除去百位数
此文档下载收益归作者所有