欢迎来到天天文库
浏览记录
ID:13469125
大小:28.00 KB
页数:3页
时间:2018-07-22
《数学运算之排列组合问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、一、排列组合问题(一)基本概念(1)加法原理:分类的用加法 乘法原理:分步的用乘法排列:与顺序有关组合:与顺序无关(2)主要解题技巧:逆向考虑法,特殊位置先排,隔板法,插空法,分类法,捆绑法等。因为这部分内容比较多,所以抽屉原理另外在下一个专题里单独讲。(二)习题与解析:1、用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?解析:这是一个从8个元素中取5个元素的排列问题,由排列数公式,共可组成:P85=8*7*6*5*4=67202、由数字0、1、2、3可以组成多少个没有重复数
2、字的偶数?解析:分类法注意到由四个数字0、1、2、3可组成的偶数有一位数、二位数、三位数、四位数这四类,所以要一类一类地考虑,再由加法原理解决.第一类:一位偶数只有0、2,共2个;第二类:两位偶数,它包含个位为0、2的两类.若个位取0,则十位可有C13种取法;若个位取2,则十位有C12种取法.故两位偶数共有(C13+C12)种不同的取法;第三类:三位偶数,它包含个位为0、2的两类.若个位取0,则十位和百位共有P23种取法;若个位取2,则十位和百位只能在0、1、3中取,百位有2种取法,十位也有2种取法
3、,由乘法原理,个位为2的三位偶数有2×2个,三位偶数共有(P23+2×2)个;第四类:四位偶数.它包含个位为0、2的两类.若个位取0,则共有P33个;若个位取2,则其他3位只能在0、1、3中取.千位有2种取法,百位和十位在剩下的两个数中取,再排成一列,有P22种取法.由乘法原理,个位为2的四位偶数有2×P22个.所以,四位偶数共有(P33+2×P22)种不同的取法.由加法原理知,共可以组成2+(C13+C12)+(P23+2×2)+(P33+2×P22)=2+5+10+10=27个不同的偶数.3、从
4、5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解析:分类法。首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5
5、×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.运用加法和乘法原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数. ②在研究完成一件
6、工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不
7、同的方法来说是一样的.4、一学生把一个一元硬币连续掷三次,试列出各种可能的排列.解析:画图 由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.5、参加会议的人两辆都彼此握手,有人统计共握手36次,到会共有多少人?()A、9 B、10 C、11 D、12解析:两人握手与顺序无关,(甲与乙握手和乙与甲握手是一样的),假设共有N个人,两两彼此握手可以握C2N次,有C2N=N(N-1)/2*1=36.
8、解得N=9,选A6、五个瓶子都贴了标签,其中恰好贴错了三个,则错的可能情况共有多少种?()A、6 B、10 C、12 D、20解析:第一步:从五个瓶子中选出三个瓶子 共有C35=10种方法第二步:对这三个瓶子进行错位排列,共有D3=2种方法第三步:根据乘法原理,所有可能的方法数为10*2*1=20种PS:有关错位排列问题。请看下一题。将有比较详细的解释。7、甲乙丙丁四个人站成一排,已知:甲不站在第
此文档下载收益归作者所有