欢迎来到天天文库
浏览记录
ID:13413894
大小:1.15 MB
页数:111页
时间:2018-07-22
《【精品】2017-2018学年北师大版高中数学选修2-3全册导学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017-2018学年北师大版高中数学选修2-3全册导学案目录第一章计数原理11.1分类加法计数原理和分步乘法计数原理11.2排列51.3组合101.4简单计数问题161.5二项式定理24第二章概率292.1离散型随机变量及其分布列292.2超几何分布352.3条件概率与独立事件392.4二项分布472.5离散型随机变量的均值与方差542.6正态分布61第三章统计案例653.1.1回归分析653.1.2相关系数683.1.3可线性化的回归分析733.2独立性检验82北师大版高中数学选修2_3导学案第一章计数原理1.1分类加
2、法计数原理和分步乘法计数原理自主整理1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有mn种方法.那么,完成这件事共有N=_____________种方法.(也称加法原理)2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有mn种方法,那么,完成这件事共有N=_____________种方法.(也称乘法原理)高手笔记1.分类:“做一件事,完成它可以有n类办法”,这是对完成这件事的所有
3、办法的一个分类.分类时,首先要根据问题的特点确定一个适合它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原理:(1)完成这件事的任何一种方法必须属于某一类;(2)分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证集合形式表述的分类加法计数原理的“S=S1∪S2∪…∪Sn,Si∩Sj=”两条基本原则成立,前者保证完成这件事的方法不遗漏,后者保证不重复,即使用分类加法计数原理的“不漏不重”.2.分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个
4、步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.名师解惑1.如何正确选用两个计数原理?剖析:两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事,求完成这件事的方法种数,就用分类加法计数原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的
5、方法种数就用分步乘法计数原理.2.在使用两个计数原理解题时,怎样才能有效防止“重复”和“遗漏”的发生?剖析:109北师大版高中数学选修2_3导学案(1)画“树形图”:当问题比较简单时,通过画“树形图”可以把所有的情况“不重不漏”地列举出来.(2)分类标准要统一:利用分类加法计数原理进行分类时,一定要以同一个标准进行分类.(3)依次排序法:利用分步乘法计数原理时,把数字或字母分为先后,先排前面的数字或字母,再依次排后面的数字或字母,将最后的数字或字母排完则结束.讲练互动【例1】高三·一班有学生50人,男30人,女20人;高三
6、·二班有学生60人,男30人,女30人;高三·三班有学生55人,男35人,女20人.(1)从高三·一班或二班或三班中选一名学生任校学生会主席,有多少种不同的选法?(2)从高三·一班、二班男生中,或从高三·三班女生中选一名学生任校学生会体育部长,有多少种不同的选法?分析:(1)选一名校学生会主席分三类:从高三·一班中选一名,有50种选法;从高三·二班中选一名,有60种选法;从高三·三班中选一名,有55种选法,然后利用分类加法计数原理求解.(2)选一名校学生会体育部长分三类:从高三·一班男生中选,有30种选法;从高三·二班男生
7、中选,有30种选法;从高三·三班女生中选,有20种选法.然后再利用分类加法计数原理求解.解:(1)50+60+55=165种,即所求选法有165种.(2)30+30+20=80种,即所求选法有80种.绿色通道:(1)中的分类标准是“班级”;(2)中的分类标准是班级和题目中要求的“性别”.在同一个问题中分类标准要统一.变式训练1.三边长均为整数,且最大边长为11的三角形的个数为()A.25B.26C.36D.37解析:另两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取值11时,x=1,2,
8、3,…,11,可有11个三角形;当y取值10时,x=2,3,…,10,可有9个三角形……当y取值6时,x只能取6,只有一个三角形.∴所求三角形的个数为11+9+7+5+3+1=36,故选C.答案:C【例2】用数字1,2,3可以组成多少个四位数?分析:109北师大版高中数学选修2_3导学案完成这件事可分为
此文档下载收益归作者所有