欢迎来到天天文库
浏览记录
ID:13375594
大小:215.00 KB
页数:11页
时间:2018-07-22
《三角函数公式推导及证明》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、24小时咨询热线:4006500666010-82330666三角函数公式推导及证明推导公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R为外接圆半径) 由正弦定理有 a/sinA=b/sinB=c/sinC=2R 所以 a=2R*sinA b=2R*sinB c=2R*sinC 加起来a+b+c=2R*(sinA+sinB+sinC)带入(a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R对数的性质及推导 用^表示乘方,用log(a)(b)表示以
2、a为底,b的对数 *表示乘号,/表示除号 定义式: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M) 推导 1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b) 2.MN=M*N 由基本性质1(换掉M和N) a^[log(a)(MN)]=a^[log
3、(a)(M)]*a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN)=log(a)(M)+log(a)(N) 3.与2类似处理 MN=M/N 由基本性质1(换掉M和N) a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)] 由指数的性质 a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M/N
4、)=log(a)(M)-log(a)(N) 4.与2类似处理 M^n=M^n 由基本性质1(换掉M)………………………………………………………………………………………………………………………………………………中小学教育网(www.g12e.com)依托人大附中教育资源,打造最专业的中小学辅导网站-共11页,当前页是第-11-页-24小时咨询热线:4006500666010-82330666 a^[log(a)(M^n)]={a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)]=a^{[log(a)(M)]*n} 又因为
5、指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 其他性质: 性质一:换底公式 log(a)(N)=log(b)(N)/log(b)(a) 推导如下 N=a^[log(a)(N)] a=b^[log(b)(a)] 综合两式可得 N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N)=[log(a)(
6、N)]*[log(b)(a)]{这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N)/log(b)(a) 性质二:(不知道什么名字) log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下 由换底公式[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(a^n)/ln(b^n) 由基本性质4可得 log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]} 再由换底公式 log(a^n)(b^m)=m/n*[log(a)
7、(b)] --------------------------------------------(性质及推导完) 公式三: log(a)(b)=1/log(b)(a) 证明如下: 由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)*log(b)(a)=1两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinB
8、cos(A-B)=cosAcosB+sinAsinB
此文档下载收益归作者所有