欢迎来到天天文库
浏览记录
ID:1335624
大小:729.04 KB
页数:14页
时间:2017-11-10
《现代优化计算方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、西安理工大学研究生课程论文/研究报告课程名称:现代优化计算方法课程代号:030219任课教师:张广鹏论文/研究报告题目:前馈神经网络的分阶段学习法综述完成日期:2011年8月15日学科:学号:1008020130姓名:马娜成绩:前向神经元网络的分阶段学习法综述1 引 言 人工神经网络(ArtificialNeuralNetworks,NN)系统从20世纪40年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得
2、到越来越广泛的应用。自1974年,Werbos提出BP学习理论,1982年学者Rumeehart提出BP算法以来,反向传播学习算法(Back-PropagationA妙rithm)是目前最为广泛、最具影响的人工神经网络(ArtificialNeuralNetwork)学习算法之一。基于误差反向传播(ErrorBackPropagation)算法的多层前馈网络(Multiple-LayerFeedforwardNetwork)(简称BP网络)和它的变化形式,体现了人工神经网络的最精华部分。BP网络可看
3、作是从输入到输出的高度非线性映射,即:f:Rn→Rm,其本质,从输入xi∈Rn到输出yi∈Rm可存在某一映射g(*),使g(xi)=yi(i=1,2…N),要求出映射f,使得在某种意义下(通常在最小二乘意义下),f是g的最佳逼近,神经网络对简单的非线性函数进行数次复合,可近似表达复杂的函数,它的存在性问题可由Kommog-orow定理及BP定理给出。BP网络的学习规则通常采用的是1949年心理学家Hebb提出的Hebb学习规则。BP网络主要用于:(1)函数逼近,用输入矢量和相应的输出矢量训练一个网络
4、逼近一个函数;(2)模式识别,用一个特定的输出矢量将它与输入矢量联系起来;(3)分类,把输入矢量以所定义的合适方式进行分类;(4)数据压缩,减少输出矢量维数以便于传输或贮存。2 BP算法的分析2.1BP网络结构隐层输出层输入层图2.1多层BP网络不仅有输入节点、输出节点,而且有一层或多层隐节点,如图2.1所示。BP神经元的传输函数目前广为采用的是Sigmoid函数,简称S型函数,即取神经元的输出为(2-1)Sigmoid函数的图像如图2.2。S型函数具有以下一些良好的特性:(1)当I较小时,也有一定
5、的O值相对应,即输人到神经元的信号比较弱时,神经元也有输出,这样不丢失信号较小的信息;(2)当I较大时,输出趋于常数,不会出现“溢出”现象;(3)具有良好的微分特性,即有(2-2).而BP神经元的输出层函数一般为线性函数,采用线性函数可以使输出值取任意值。2.2BP网络的学习在确定了BP网络结构后,要通过输入输出样本集对网络进行训练,亦即对网络的阈值和权值进行学习和修正,以使网络实现给定的输入输出映射关系。BP网络的学习过程主要分为两个阶段:第一个阶段是输入已知学习样本,通过设置的网络结构和前一次迭
6、代的权值和阈值,从网络的第一层向后计算各神经元的输出。第二个阶段是对权值和阈值进行修改,从最后一层向前计算各权值和阈值对误差的影响(梯度),从而对权值和阈值进行修改。以上两个过程反复交替,知道达到收敛为止。由于误差逐层往回传递,以修正层与层之间的权值和阈值,所以该算法为误差反向传播(backpropagation)算法,这种误差反向学习算法可以推广到有若干个中间层的多层网络,因此该多层网络常称之为BP网络。标准的BP算法是一种梯度下降学习算法,其权值的修正是沿着误差性能函数梯度的反方向进行的。以下针
7、对标准BP算法说明具体解析步骤:(1)初始化:给权值、和阈值、赋予(-1,1)之间的随机值。(2)随机取一对样本对网络进行训练(1)计算中间层的输入/出:输入:,输出:(2-3)(2)计算输出层的输入/出输入:,输出:(2-4)(3)计算输出层的一般误差(2-5)(4)计算中间层的一般误差(2-6)(5)修改输出层的权值和阈值(2-7)(2-8)(6)修正隐层的权值和阈值(2-9)(2-10)(7)取下一对样本返回(3)开始训练,直到m个样本训练结束(8)判断全局误差是否小于预定值,否则,回到(2)
8、重新进行训练,直到满足要求或达到预定训练次数,停止训练。3标准BP算法存在的问题及BP算法的改进算法标准的BP算法存在着易形成局部极小值,训练陷入瘫痪和收敛速度很慢的问题,从而影响了它的实际使用。为此,人们在标准BP算法的基础上进行了许多有益的改进,改进方法主要有两类:一是基于标准梯度下降的改进方法如附加动量的BP算法、自适应学习率调整法、弹性BP算法等;二是基于标准数值优化的改进算法如共轭梯度法、拟牛顿法和Levenberg-Marquardt(LM)法等。(1)动
此文档下载收益归作者所有