高中数学立体几何知识点与解题方法技巧

高中数学立体几何知识点与解题方法技巧

ID:13243692

大小:3.40 MB

页数:53页

时间:2018-07-21

高中数学立体几何知识点与解题方法技巧_第1页
高中数学立体几何知识点与解题方法技巧_第2页
高中数学立体几何知识点与解题方法技巧_第3页
高中数学立体几何知识点与解题方法技巧_第4页
高中数学立体几何知识点与解题方法技巧_第5页
资源描述:

《高中数学立体几何知识点与解题方法技巧》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、优盟教育中心www.bestedu.org立体几何知识点&例题讲解高考时如果图形比较规则且坐标也比较好计算时就用坐标法(向量法)解决,但平时传统方法和向量法都要熟练。并且要多用传统方法,这样才能把自己的空间想象能力培养上去。一、知识点<一>常用结论1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线

2、线平行;(3)转化为面面平行.3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线

3、与两个垂直平面的交线垂直.6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.7.夹角公式:设a=,b=,则cos〈a,b〉=.8.异面直线所成角:=(其中()为异面直线所成角,分别表示异面直线的方向向量)9.直线与平面所成角:(为平面的法向量).10、空间四点A、B、C、P共面,且x+y+z=111.二面角的平面角或(,为平面,的法向量).12.三余弦定理:设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO

4、与AC所成的角为.则.13.空间两点间的距离公式若A,B,则=.14.异面直线间的距离:(是两异面直线,其公垂向量为,分别是上任一点,为间的距离).15.点到平面的距离:(为平面的法向量,是经过面的一条斜线,).16.三个向量和的平方公式:53更好的辅导,更美好的人生!400-018-7099优盟教育中心www.bestedu.org17.长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有.(立体几何中长方体对角线长的公式是其特例).18.面积射影定理.(平面多边形及其射影的面积

5、分别是、,它们所在平面所成锐二面角的).19.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长,正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.(3)球与正四面体的组合体:棱长为的正四面体的内切球的半径为,外接球的半径为.20. 求点到面的距离的常规方法是什么?(直接法、体积法)21. 求多面体体积的常规方法是什么?(割补法、等积变换法)〈二〉提示:1.在用反三角函数表示直线

6、的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及义?①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次.②直线的倾斜角、到的角、与的夹角的取值范围依次是.③反正弦、反余弦、反正切函数的取值范围分别是.〈三〉解题思路:53更好的辅导,更美好的人生!400-018-7099优盟教育中心www.bestedu.org1、平行垂直的证明主要利用线面关系的转化:线面平行的判定:线面平行的性质:三垂线定理(及逆定理):线面垂直:53更好的辅导,更美好的人生!400-018-7099

7、优盟教育中心www.bestedu.org面面垂直:2、三类角的定义及求法(1)异面直线所成的角θ,0°<θ≤90°(2)直线与平面所成的角θ,0°≤θ≤90°(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)三类角的求法:①找出或作出有关的角。②证明其符合定义,并指出所求作的角。③计算大小(解直角三角形,或用余弦定理)。53更好的辅导,更美好的人生!400-018-7099优盟教育中心www.bestedu.org53更好的辅导,更美好的人生!40

8、0-018-7099优盟教育中心www.bestedu.org二、题型与方法【考点透视】不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成。求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。【例题解析】53更好的辅导,更美好的人生!400-018-7099优盟教育中心www.bestedu.org考点1点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.例

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。