资源描述:
《义务教育高考数学-人教a版(理)一轮复习【配套word版文档】:第十一篇第4讲 古典概型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第4讲古典概型A级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·北京海淀期末)一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为( ).A.B.C.D.解析 由题意知,基本事件有=12个,满足条件的基本事件就一个,故所求概率为P=.答案 A2.(2013·皖南八校联考)一个袋子中有5个大小相同的球,其中有3个黑球与2个红
2、球,如果从中任取两个球,则恰好取到两个同色球的概率是( ).A.B.C.D.解析 基本事件有C=10个,其中为同色球的有C+C=4个,故所求概率为=.答案 C3.(2013·福州一模)甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( ).A.B.C.D.解析 (甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以P==.答案 A4.在一次班级聚会上,某班到会的女同学
3、比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为,则这班参加聚会的同学的人数为( ).A.12B.18C.24D.32解析 设女同学有x人,则该班到会的共有(2x-6)人,所以=,得x=12,故该班参加聚会的同学有18人,故选B.答案 B二、填空题(每小题5分,共10分)5.(2013·南京模拟)在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________.解析 由题意得到的P(m,
4、n)有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x2+y2=9的内部的点有(2,1),(2,2),所以概率为=.答案 6.(2013·郑州二检)连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则θ∈的概率是________.解析 ∵m,n均为不大于6的正整数,∴当点A(m,n)位于直线y=x上及其下方第一象限的部分时,满足θ∈的点A(m,n)有6+5+4+3+2+1=21个,点A(m,n)的基本事件总数为6×6=36,
5、故所求概率为=.答案 三、解答题(共25分)7.(12分)(2012·天津)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解 (1)由分层抽样的定义知,从小学中抽取的学校数目为6×=3;从中学中抽取的学校数目为6×=2;从大学中抽取的学校数目为6×=1.故从小学、中学、大学中
6、分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,1所大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(
7、A1,A3),(A2,A3),共3种.所以P(B)==.8.(13分)(2011·广东)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n12345成绩xn7076727072(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.解 (1)∵这6位同学的平均成绩为75分,∴(70+76+72+70+72+x6)=75,解得x6=90
8、,这6位同学成绩的方差s2=×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s=7.(2)从前5位同学中,随机地选出2位同学的成绩共有C=10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为=0.4,即恰有1位同学成绩在区间(68,75)中的概率为0.4.B级 能力突破(时间:30分钟 满分: