matlab车牌识别系统

matlab车牌识别系统

ID:13090820

大小:423.50 KB

页数:14页

时间:2018-07-20

matlab车牌识别系统_第1页
matlab车牌识别系统_第2页
matlab车牌识别系统_第3页
matlab车牌识别系统_第4页
matlab车牌识别系统_第5页
资源描述:

《matlab车牌识别系统》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、河南农业大学《数字图像处理》课程设计说明书题目:基于神经网络的车牌识别学院:理学院专业:信息安全专门化班级:10信安三班学号:1008105072姓名:高凯强指导教师:李宝方成绩:时间:2013年5月20日至2013年6月5日基于matlab的车牌识别一、课程设计目的与要求(一)熟练掌握Matlab和数字图像处理函数的应用;(二)思考并理解所学过的数字图像算法的实现过程;(三)通过Matlab数字图像处理技术实现这一车辆牌照识别的功能。(随着我国交通运输的不断发展,智能交通系统(IntelligentTraffi

2、cSystem,简称ITS)的推广变的越来越重要,而作为ITS的一个重要组成部分,车辆牌照识别系统(vehiclelicenseplaterecognitionsystem,简称LPR)对于交通管理、治安处罚等工作的智能化起着十分重要的作用。它可广泛应用于交通流量检测,交通控制于诱导,机场,港口,小区的车辆管理,不停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域,具有广阔的应用前景。由于牌照是机动车辆管理的唯一标识符号,因此,车辆牌照识别系统的研究在机动车管理方面具有十分重要的实际意义!)二、实验内容本次

3、课程实际的任务是设计一个基于matlab的汽车牌照识别程序,能够实现车牌图像预处理,车牌定位,字符分割,然后通过神经网络对车牌进行字符识别,最终从一幅图像中提取车牌中的字母和数字,给出文本形式的车牌号码。三、总体方案设计车辆牌照识别系统的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。字符分割车牌定位

4、图片预处理车辆图片输出结果字符图像匹配字符样本采集车牌识别系统原理图12四、车辆牌照识别系统组成(一)图像预处理:对汽车图像进行图像灰度转换、图像增强和边缘检测等。(二)车牌定位:从预处理后的汽车图像中分割出车牌图像。即在一幅车辆图像中找到车牌所在的位置。(三)字符分割:对车牌图像进行几何校正、去噪、二值化以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像(四)字符识别:对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。五、各个功能模块的主要实现

5、程序(一)图像预处理输入的彩色图像包含大量颜色信息,会占用较多的存储空间,且处理时也会降低系统的执行速度,因此对图像进行识别等处理时,常将彩色图像转换为灰度图像,以加快处理速度。对图像进行灰度化处理、边缘提取、再利用形态学方法对车牌进行定位。具体步骤如下:首先对图像进行灰度转换,二值化处理然后采用4X1的结构元素对图像进行腐蚀,去除图像的噪声。采用25X25的结构元素,对图像进行闭合应算使车牌所在的区域形成连通。在进行形态学滤波去除其它区域。1.原始图像此处用两个图片作为却别,分别为:[豫A*A375G]和[渝A

6、N7968]2.代码部分%%%%选择车牌图片%%%%[filename,pathname]=uigetfile({'*.jpg';'*.bmp';'*.gif'},'选择图片');str=[pathnamefilename];I=imread(str);%将选择的图片读取,并赋于I12figure(1),subplot(3,2,1),imshow(I);title('原始图像');I1=rgb2gray(I);%转化为灰度图像figure(1),subplot(3,2,2),imshow(I1),title('灰

7、度图像');I2=edge(I1,'roberts',0.09,'both');%采用robert算子进行边缘检测figure(1),subplot(3,2,3),imshow(I2),title('边缘检测后图像');se=[1;1;1];%线型结构元素I3=imerode(I2,se);%腐蚀图像figure(1),subplot(3,2,4),imshow(I3),title('腐蚀后边缘图像');se=strel('rectangle',[25,25]);%矩形结构元素I4=imclose(I3,se);

8、%图像聚类、填充图像figure(1),subplot(3,2,5),imshow(I4),title('填充后图像');I5=bwareaopen(I4,2000);%去除聚团灰度值小于2000的部分figure(1),subplot(3,2,6),imshow(I5),title('形态滤波后图像');3.预处理过程中的图片截图(二)车牌定位1.代码部分[y,x]=s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。