高中数学人教a版选修2-2一章1.1.3《导数的几何意义》【练习】

高中数学人教a版选修2-2一章1.1.3《导数的几何意义》【练习】

ID:12897910

大小:118.50 KB

页数:10页

时间:2018-07-19

高中数学人教a版选修2-2一章1.1.3《导数的几何意义》【练习】_第1页
高中数学人教a版选修2-2一章1.1.3《导数的几何意义》【练习】_第2页
高中数学人教a版选修2-2一章1.1.3《导数的几何意义》【练习】_第3页
高中数学人教a版选修2-2一章1.1.3《导数的几何意义》【练习】_第4页
高中数学人教a版选修2-2一章1.1.3《导数的几何意义》【练习】_第5页
资源描述:

《高中数学人教a版选修2-2一章1.1.3《导数的几何意义》【练习】》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!那今天就来小试牛刀吧!注意哦:在答卷的过程中一要认真仔细哦!不交头接耳,不东张西望!不紧张!养成良好的答题习惯也要取得好成绩的关键!祝取得好成绩!一次比一次有进步!www.gkstk.com1.1.3导数的几何意义一、选择题1.下面说法正确的是(  )A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处没有切线B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在D

2、.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在【答案】C 【解析】f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处切线的斜率.2.曲线y=x2-2在点处切线的倾斜角为(  )A.1B.C.πD.-【答案】 B【解析】 ∵y′=li=li(x+Δx)=x∴切线的斜率k=y′

3、x=1=1.∴切线的倾斜角为,故应选B.3.曲线y=x3-3x2+1在点(1,-1)处的切线方程为(  )A.y=3x-4B.y=-3x+2C.y=-4x+3D.y=4x-5【答案】 B【解析】 y′=3x2-6x,∴y′

4、x=1=-3.由

5、点斜式有y+1=-3(x-1).即y=-3x+2.4.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线(  )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直【答案】B 【解析】曲线y=f(x)在点(x0,f(x0))处的切线斜率为0,切线与x轴平行或重合.5.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,则P点的坐标为(  )A.(1,0)或(-1,-4)B.(0,1)C.(-1,0)D.(1,4)【答案】 A【解析】 ∵f(x)=x3+x-2,设xP=x0,∴Δy=3x·Δx+3x0·(Δx)2+(

6、Δx)3+Δx,∴=3x+1+3x0(Δx)+(Δx)2,∴f′(x0)=3x+1,又k=4,∴3x+1=4,x=1.∴x0=±1,故P(1,0)或(-1,-4),故应选A.6.已知函数f(x)的图像如图所示,下列数值的排序正确的是(  )A.0f′(3).二、填空题

7、7.设点P是曲线y=x3-x+上的任意一点,P点处的切线倾斜角为α,则α的取值范围为(  )A.∪B.∪C.D.【答案】 A【解析】 设P(x0,y0),∵f′(x)=li=3x2-,∴切线的斜率k=3x-,∴tanα=3x-≥-.∴α∈∪.故应选A.8.如图,函数y=f(x)的图像在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】 ∵点P在切线上,∴f(5)=-5+8=3,又∵f′(5)=k=-1,∴f(5)+f′(5)=3-1=2.三、解答题9.已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点

8、P作直线l.(1)求使直线l和y=f(x)相切且以P为切点的直线方程;(2)求使直线l和y=f(x)相切且切点异于点P的直线方程y=g(x).【解析】(1)y′=li=3x2-3.则过点P且以P(1,-2)为切点的直线的斜率k1=f′(1)=0,∴所求直线方程为y=-2.(2)设切点坐标为(x0,x-3x0),则直线l的斜率k2=f′(x0)=3x-3,∴直线l的方程为y-(x-3x0)=(3x-3)(x-x0)又直线l过点P(1,-2),∴-2-(x-3x0)=(3x-3)(1-x0),∴x-3x0+2=(3x-3)(x0-1),解得x0=1(舍去)或x0=

9、-.故所求直线斜率k=3x-3=-,即:y-(-2)=-(x-1),即y=-x+.10.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l2的方程;(2)求由直线l1、l2和x轴所围成的三角形的面积.【解析】 (1)y′

10、x=1=li=3,所以l1的方程为:y=3(x-1),即y=3x-3.设l2过曲线y=x2+x-2上的点B(b,b2+b-2),y′

11、x=b=li=2b+1,所以l2的方程为:y-(b2+b-2)=(2b+1)·(x-b),即y=(2b+1)x-b2-2.因为l1⊥l2,所以3×(

12、2b+1)=-1,所以b=-,所以l2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。