欢迎来到天天文库
浏览记录
ID:12893315
大小:207.00 KB
页数:6页
时间:2018-07-19
《专题之实数、代数式、分式、根式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、一.实数知识梳理与整合:★重点★绝化值、倒数、相反数与数轴(一)数的分类实数无理数(无限不循环小数)有理数正分数负分数正整数0负整数(有限或无限循环性数)整数分数正无理数负无理数1.实数:“分类”的原则:1)相称(不重、不漏)0实数负数整数分数无理数有理数正数整数分数无理数有理数2)有标准2.非负数:正实数与零的统称。(表为:x≥0)│a│(a≥0)(a为一切实数)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a
2、中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)a(a≥0)-a(a<0)│a│=7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是
3、实数a在数轴上所对应的点到原点的距离。②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。(二).实数的运算61.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。典型例题:axb1.已知:a、b、x在数轴上的位置如下图,
4、求证:│x-a│+│x-b│=b-a.2.实数a,b,c在数轴上的对应点如图所示化简=________________.3.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。4.已知,互为相反数,,互为倒数,的倒数等于它的本身,则等于.5.探究数字黑洞:“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来。无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数通过一种运算,都能被它“吸”进去,无一能逃脱它的摩掌。臂如:任意找一个3的倍数的数
5、,先把这个数的每个数位上的数字都立方,再相加得到一个新数,然后把这个新数的每个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数T=,我们称它为数字“黑洞”,二.代数式知识梳理与整合:★重点★代数式的有关概念及性质,代数式的运算单项式多项式整式分式样有理式无理式代数式1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。整式和分式统称为有理式。2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。没有除法运算或虽有除法运算但除式
6、中不含有字母的有理式叫做整式。有除法运算并且除式中含有字母的有理式叫做分式。3.单项式与多项式没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,6=x,=│x│等。4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字
7、母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。含有关于字母开方运算的代数式叫做无理式。注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。7.算术平方根⑴正数a的正的平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。满足条件:①被开方数的因数是整数,因式是整式;
8、②被开方数中不含有开得尽方的因数或因式。把分母中的根号划去叫做分母有理化。a·a…a=n个9.指数⑴(—幂,乘方运算)①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)⑵零指数:=1(a≠0)负整指数:=1/(a≠0,p是正整数)三.分式、根式、乘方幂运算知识点梳理与整合:1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:=(m≠0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则)4.幂的运算性质:①
此文档下载收益归作者所有