欢迎来到天天文库
浏览记录
ID:12887062
大小:230.50 KB
页数:7页
时间:2018-07-19
《锐角三角函数(第2课时)教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第一章直角三角形的边角关系《锐角三角函数(第2课时)》教学设计说明深圳市宝安区塘尾万里学校陈武惠一、学生知识状况分析1、学生已经知道的:学生在前一节课学习了有关正切的知识,学会了用直角三角形中两条直角边的关系来描述梯子的倾斜度(即倾斜角的正切)2、学生想知道的:直角三角形中边与角之间是否还存在着其他的关系呢?是否也能用来刻画梯子的倾斜度呢?3、学生能自己解决的:探索出直角三角形中,一个锐角的对边与斜边的的比、邻边与斜边的比是随锐角的大小变化而变化的.二、教学任务分析本课是九年级下册第一章第一节的第二课时,是让学生在理
2、解了正切的基础上,进一步通过探究发现直角三角形中直角边与斜边之间存在的关系.同时发现,可以用其它的方式来刻画梯子的倾斜程度,从而拓展了学生的思维和视野.在导学探究过程中,不同学生对问题的理解是不一样的,教师应尊重学生间的差异,不要急于否定学生的答案,而要鼓励学生发表自己的看法,培养学生的逻辑思维能力,培养学生学习数学的自信心.知识与技能1、能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2、能够用sinA,cosA表示直角三角形中直角边与斜边的比,能够用正弦、余
3、弦进行简单的计算.过程与方法1、经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2、体会解决问题的策略的多样性,发展实践能力和创新精神.7情感与价值观1、积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学.2、形成实事求是的态度以及交流分享的习惯.教学重点:理解正弦、余弦的数学定义,感受数学与生活的联系.教学难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.三、教学过程分析本节课设计了六个教学环节:第一环节:复习引入;第二环节:探求新知;第三环节:及时检测;第四环节:归类提
4、升;第五环节:总结延伸;第六环节:随堂小测;第一环节复习引入1、如图,Rt△ABC中,tanA=,tanB=.2、在Rt△ABC中,∠C=90°,tanA=,AC=10,求BC,AB的长.3、若梯子与水平面相交的锐角(倾斜角)为∠A,∠A越大,梯子越;tanA的值越大,梯子越.4、当Rt△ABC中的一个锐角A确定时,其它边之间的比值也确定吗?可以用其它的方式来表示梯子的倾斜程度吗?设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),第4题的问题引发学生的疑问,激
5、起学生的探究欲望.第二环节探求新知探究活动1:B1B2AC1C2如图,请思考:(1)Rt△AB1C1和Rt△AB2C2的关系是;7(2);(3)如果改变B2在斜边上的位置,则;思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,
6、可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念:1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=______.3、锐角A的正弦,余弦,正切和余切都叫
7、做∠A的三角函数.温馨提示:(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为:sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为:sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.7设计意图:1、类比正切的定义,让学生理解正弦和余弦的
8、含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让
此文档下载收益归作者所有