欢迎来到天天文库
浏览记录
ID:12876175
大小:215.50 KB
页数:12页
时间:2018-07-19
《【月考试卷】湖北省孝感高级中学2018届高三9月摸底考试语文试题word版含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“变量间的相关关系”中的核心概念和思想方法解读及教学建议河北师范大学数学与信息科学学院程海奎《变量间的相关关系》的主要内容为采用定性和定量相结合的方法研究变量之间的相关关系,主要研究线性相关关系.主要概念有“相关关系”、“散点图”、“回归直线和回归直线方程”、“相关系数”等.研究方法为先绘制散点图,直观表示观测数据,定性描述变量间相关关系的类型、方向、相关程度.然后应用最小二乘法确定变量间相关关系的具体表达形式,描述变量间的数量规律,并由一个变量的取值去推测另一个变量的取值.这部分内容涉及到一些重要的统计思想和方
2、法,对学生的学习和教师的教学都有一定的难度.本文就研究对象、核心概念、研究方法、统计思想及相关应用进行简单的解读,提出一些教学建议,希望对教学能提供一些帮助.一、相关概念及统计思想方法1.相关关系——变量间的不确定关系两个变量之间的数量关系有两种不同的类型:一种是函数关系,一种是相关关系.当一个变量取一定的值时,另一个变量有确定的值与之对应,我们称这种关系为确定的函数关系.一般把作为影响因素的变量称为自变量,把与之对应变化的变量称为因变量.当一个变量取一定的数值时,与之对应的另一个变量的值虽然不确定,但它按某种规
3、律在一定的范围内变化,变量间的这种关系称为不确定性的相关关系.或者说两个变量之间确实存在某种关系,但不具备函数关系所要求的确定性.函数关系和相关关系都是指两个变量之间的数量关系.函数关系是两个非随机变量之间的一种确定关系,是一种因果关系.而相关关系是两个变量之间的一种不确定的关系,这两个变量中至少有一个是随机变量.两个相关变量之间可能有内在联系(真实相关),也可能完全不存在内在联系(虚假相关).之所以X和Y之间是相关关系,原因是变量X是影响变量Y的主要因素,但不是唯一因素,还有其他种种因素,而这些因素我们又不能完
4、全把握.研究函数关系,可以用数学分析的方法.例如,已知y和x之间具有线性关系,即,此时只要知道变量的两组取值就可以确定函数表达式.研究相关关系则必须对变量进行多次观测,借助统计的相关思想和方法.例如,有人认为人的体重y和身高x之间具有近似的二次函数关系,由三个人的身高和体重数据,确定出y和x之间的表达式.这样得到的结果很不可靠,难以使人信服.2.散点图—描述相关关系的直观工具由于相关关系的不确定性,寻找变量X和Y之间的相关关系时,首先要对变量进行观测.设n次观测值为.在直角坐标系中,横轴代表变量X,纵轴代表变量Y
5、,将观测数据用坐标点的形式描绘出来,得到的图形称为散点图.散点图是研究相关关系的直观工具,可以定性的判断相关的方向和程度. 如果散点大致分布在一条直线附近,又不完全在一条直线上,说明变量间具有线性相关关系;如果这些点大致分布在一条曲线附近,说明变量间具有非线性相关关系;如果这些点的分布几乎没有什么规则,说明两个变量间没有相关关系.对于线性相关,如果散点从左下角到右上角沿直线分布,那么两个变量正相关,如果散点从左上角到右下角沿直线分布,两个变量负相关.如果散点在整体上和某一直线越接近,表明变量间相关关系越强.
6、3.数据分析方法—相关分析与回归分析对变量间相关关系,在定性分析的基础上,需要进行定量分析.定量分析有相关分析和回归分析两种方法.相关分析是用一个指标(称为相关系数)来反映变量间相关关系的密切程度(见人教A版必修3P85,阅读与思考).回归分析就是根据相关关系的具体形态,选择一个合适的数学模型,来近似表达变量间的平均变化关系.相关分析和回归分析具有共同的研究对象,在具体应用时,需要互相补充.作相关分析需要依靠回归分析表明变量相关的具体形式,而进行回归分析需要通过相关分析表明变量间的相关程度,只有变量间存在高度相关
7、时,由回归分析得到的变量间的具体形式才有意义.相关分析研究变量间的相关的方向和相关程度,它不提供相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况.相关分析不必确定哪个变量是自变量,哪个是因变量,所涉及的两个变量可以都是随机变量.回归分析根据观测数据,确定一个数学方程式(回归方程),根据这个方程式可以由已知量推测未知量,为估算和预测提供一个重要方法.回归分析必须事先确定具有相关关系的变量中哪个为自变量,哪个为因变量.一般地说,自变量是普通变量(人为可以控制其取值),因变量是随机变量.4.最小二乘
8、思想—统计学基础的重要部分当两个变量之间存在相关关系时,由于不确定性,如果只有很少几组变量观测值,很难估计误差的大小.法国法数学家勒让德(LeGendre,1752—1833)在根据测量数据预测彗星轨道的问题时,发现了如何有效利用全部测量数据的方法.即通过计算得出一组数值,在使数据组的偏差达到最小的意义下,这些数值是最优的.由勒让德的方法得出的数值充分利用了所有数据信息,
此文档下载收益归作者所有