黄昆著固体物理习题解答

黄昆著固体物理习题解答

ID:12873145

大小:635.50 KB

页数:11页

时间:2018-07-19

黄昆著固体物理习题解答_第1页
黄昆著固体物理习题解答_第2页
黄昆著固体物理习题解答_第3页
黄昆著固体物理习题解答_第4页
黄昆著固体物理习题解答_第5页
资源描述:

《黄昆著固体物理习题解答》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1,设晶体中每个振子的零点振动能为,使用德拜模型求晶体的零点振动能。证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K时振动能就是各振动模零点能之和。和代入积分有,由于一股晶体德拜温度为~,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.2,根据状态简并微扰结果,求出与及相应的波函数及?,并说明它们的特性.说明它们都代表驻波,并比较两个电子云分布说明能隙的来源(假设=)。<解>令,,简并微扰波函数为取带入上式,其中V(x)<0,,从上式得到B=-A,于是=取,=由教材可知,及均为驻波.在驻波

2、状态下,电子的平均速度为零.产生驻波因为电子波矢时,电子波的波长,恰好满足布拉格发射条件,这时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同代入能量。113,马德隆常数的计算<解>设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r表示相邻离子间的距离,于是有前边的因子2是因为存在着两个相等距离的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为当X=1时,有4,电子在周期

3、场中的势能.0,其中d=4b,是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带度.<解>(I)题设势能曲线如下图所示.(2)势能的平均值:由图可见,是个以为周期的周期函数,所以11题设,故积分上限应为,但由于在区间内,故只需在区间内积分.这时,,于是。(3),势能在[-2b,2b]区间是个偶函数,可以展开成傅立叶级数利用积分公式得第二个禁带宽度代入上式再次利用积分公式有5,考虑一双原子链的晶格振动,链上最近邻原子间力常数交替为c和10c.令两种原子质量相同,且最近邻间距为.求在和处的.大略地画出色散关系

4、.此问题模拟如这样的双原子分子晶体。<解>a/2C10c,将代入上式有11是U,v的线性齐次方程组,存在非零解的条件为=0,解出当K=0时,当K=时与的关系如下图所示.这是一个双原子(例如)晶体6,bcc和fccNe的结合能,用林纳德—琼斯(Lennard—Jones)势计算Ne在bcc和fcc结构中的结合能之比值.<解>7.对于,从气体的测量得到Lennard—Jones参数为计算fcc结构的的结合能[以KJ/mol单位),每个氢分子可当做球形来处理.结合能的实验值为0.751kJ/mo1,试与计算值比较.<解>以为

5、基团,组成fcc结构的晶体,如略去动能,分子间按Lennard—Jones势相互作用,则晶体的总相互作用能为:11因此,计算得到的晶体的结合能为2.55KJ/mol,远大于实验观察值0.75lKJ/mo1.对于的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造成理论和实验值之间巨大差别的原因.8,证明一个自由简单晶格在第一布里渊区顶角上的一个自由电子动能比该区一边中点大2倍.(b)对于一个简单立力晶格在第一布里渊区顶角上的一个自由电子动能比该区面心上大多少?(c)(b)的结果对于二价金属的电导率可

6、能会产生什么影响7<解>(a)二维简单正方晶格的晶格常数为a,倒格子晶格基矢第一布里渊区如图所示0所以b)简单立方晶格的晶格常数为a,倒格子基矢为第一布里渊区如图7—2所示.11所以(c)如果二价金属具有简单立方品格结构,布里渊区如图7—2所示.根据自由电子理论,自由电子的能量为,FerM面应为球面.由(b)可知,内切于4点的内切球的体积,于是在K空间中,内切球内能容纳的电子数为其中二价金属每个原子可以提供2个自由电子,内切球内只能装下每原子1.047个电子,余下的0.953个电子可填入其它状态中.如果布里渊区边界上存

7、在大的能量间隙,则余下的电子只能填满第一区内余下的所有状态(包括B点).这样,晶体将只有绝缘体性质.然而由(b)可知,B点的能员比A点高很多,从能量上看,这种电子排列是不利的.事实上,对于二价金属,布里渊区边界上的能隙很小,对于三维晶体,可出现一区、二区能带重迭.这样,处于第一区角顶附近的高能态的电子可以“流向”第二区中的能量较低的状态,并形成横跨一、二区的球形Ferm面.因此,一区中有空态存在,而二区中有电子存在,从而具有导电功能.实际上,多数的二价金届具有六角密堆和面心立方结构,能带出现重达,所以可以导电.9,正方

8、晶格.设有二维正方晶格,晶体势为用基本方程,近似求出布里渊区角处的能隙.<解>以表示位置矢量的单位矢量,以表示倒易矢量的单位矢量,则有,11晶体势能。这样基本方程求布里渊区角顶,即处的能隙,可利用双项平面波近似来处理。当时依次有而其他的,,所以在双项平面波近似下上式中只有=0,因为1110,已知一维单原子链,其中第个格波,在第个格

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。