普通高中课程标准实验教科书数学

普通高中课程标准实验教科书数学

ID:12865676

大小:35.00 KB

页数:10页

时间:2018-07-19

普通高中课程标准实验教科书数学_第1页
普通高中课程标准实验教科书数学_第2页
普通高中课程标准实验教科书数学_第3页
普通高中课程标准实验教科书数学_第4页
普通高中课程标准实验教科书数学_第5页
资源描述:

《普通高中课程标准实验教科书数学》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、普通高中课程标准实验教科书数学普通高中课程标准实验教科书-数学[人教版]高三新数学第一轮复习教案(讲座36)-空间向量及其应用一.课标要求:  (1)空间向量及其运算  ①经历向量及其运算由平面向空间推广的过程;  ②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;  ③掌握空间向量的线性运算及其坐标表示;  ④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。  (2)空间向量的应用  ①理解直线的方向向量与平面的法向量;  ②能用向量语言表述线线、线面、面面的垂直、平行关系;  ③能用向量方法证明有关

2、线、面位置关系的一些定理(包括三垂线定理);  ④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。二.命题走向  本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。  预测07年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。三.要点精

3、讲  1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。相等向量:长度相等且方向相同的向量叫做相等向量。  表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。  说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。  2.向量运算和运算率           加法交换率:  加法结合率:  数乘分配率:  说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量

4、加法的平行四边形法则在空间仍成立。  3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。平行于记作∥。注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义。  共线向量定理:对空间任意两个向量(≠)、,∥的充要条件是存在实数使=  注:⑴上述定理包含两个方面:①性质定理:若∥(≠0),则有=,其中是唯一确定的实数。②判断定理:若存在唯一实数,使=(≠0),则有∥(若用此结论判断、所在直线平行,还需(或)上有一点不在(或)上)。  ⑵对于确定的和,

5、=表示空间与平行或共线,长度为

6、

7、,当>0时与同向,当<0时与反向的所有向量。  ⑶若直线l∥,,P为l上任一点,O为空间任一点,下面根据上述定理来推导的表达式。  推论:如果l为经过已知点A且平行于已知非零向量的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式             ①  其中向量叫做直线l的方向向量。  在l上取,则①式可化为②  当时,点P是线段AB的中点,则③  ①或②叫做空间直线的向量参数表示式,③是线段AB的中点公式。  注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用

8、途:解决三点共线问题。⑶结合三角形法则记忆方程。  4.向量与平面平行:如果表示向量的有向线段所在直线与平面平行或在平面内,我们就说向量平行于平面,记作∥。注意:向量∥与直线a∥的联系与区别。  共面向量:我们把平行于同一平面的向量叫做共面向量。  共面向量定理如果两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x、y,使①  注:与共线向量定理一样,此定理包含性质和判定两个方面。  推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使  ④  或对空间任一定点O,有⑤  在平面MAB内,点P对应的实数对(x,y)是唯一的。①式叫做平面MAB

9、的向量表示式。  又∵代入⑤,整理得            ⑥  由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量、(或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。  5.空间向量基本定理:如果三个向量、、不共面,那么对空间任一向量,存在一个唯一的有序实数组x,y,z,使  说明:⑴由上述定理知,如果三个向量、、不共面,那么所有空间向量所组成的集合就是,这个集

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。