义务教育1.4.2正弦函数余弦函数的性质(教、学案)

义务教育1.4.2正弦函数余弦函数的性质(教、学案)

ID:12677549

大小:301.00 KB

页数:10页

时间:2018-07-18

义务教育1.4.2正弦函数余弦函数的性质(教、学案)_第1页
义务教育1.4.2正弦函数余弦函数的性质(教、学案)_第2页
义务教育1.4.2正弦函数余弦函数的性质(教、学案)_第3页
义务教育1.4.2正弦函数余弦函数的性质(教、学案)_第4页
义务教育1.4.2正弦函数余弦函数的性质(教、学案)_第5页
资源描述:

《义务教育1.4.2正弦函数余弦函数的性质(教、学案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!那今天就来小试牛刀吧!注意哦:在答卷的过程中一要认真仔细哦!不交头接耳,不东张西望!不紧张!养成良好的答题习惯也要取得好成绩的关键!祝取得好成绩!一次比一次有进步!§1.4.2正弦函数余弦函数的性质【教材分析】《正弦函数和余弦函数的性质》是普通高中课程标准实验教材必修4中的内容,是正弦函数和余弦函数图像的继续,本课是根据正弦曲线余弦曲线这两种曲线的特点得出正弦函数和余弦函数的性质。【教学目标】1.会根据图象观察得出正弦函数、余弦函数的性质;会求含有的三角式的性质;会应用正、余弦

2、的值域来求函数和函数的值域  2.在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.  3.在解决问题的过程中,体验克服困难取得成功的喜悦.【教学重点难点】教学重点:正弦函数和余弦函数的性质。  教学难点:应用正、余弦的定义域、值域来求含有的函数的值域【学情分析】知识结构:在函数中我们学习了如何研究函数,对于正弦函数余弦函数图像的学习使学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。心理特征:高一普通班学生已掌握三角函数的诱导公式,并了解了三角函

3、数的周期性,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。但在处理问题时学生考虑问题不深入,往往会造成错误的结果。【教学方法】1.学案导学:见后面的学案。2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习【课前准备】1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。【课时安排】1课时【教学过程】一、预习检查、总结疑惑检查落实了学生的预习情况并了解了

4、学生的疑惑,使教学具有了针对性。二、复 习导入、展示目标。(一)问题情境复习:如何作出正弦函数、余弦函数的图象?生:描点法(几何法、五点法),图象变换法。并要求学生回忆哪五个关键点引入:研究一个函数的性质从哪几个方面考虑?生:定义域、值域、单调性、周期性、对称性等提出本节课学习目标——定义域与值域(二)探索研究给出正弦、余弦函数的图象,让学生观察,并思考下列问题:1.定义域正弦函数、余弦函数的定义域都是实数集(或).2.值域(1)值域因为正弦线、余弦线的长度不大于单位圆的半径的长度,所以,即也就是说,正弦函数、余弦函数的值域都是.(2)最值正弦函数

5、①当且仅当时,取得最大值②当且仅当时,取得最小值余弦函数①当且仅当时,取得最大值②当且仅当时,取得最小值3.周期性由知:正弦函数值、余弦函数值是按照一定规律不断重复地取得的.定义:对于函数,如果存在一个非零常数,使得当取定义域内的每一个值时,都有,那么函数就叫做周期函数,非零常数叫做这个函数的周期.由此可知,都是这两个函数的周期.对于一个周期函数,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做的最小正周期.根据上述定义,可知:正弦函数、余弦函数都是周期函数,都是它的周期,最小正周期是.4.奇偶性由可知:()为奇函数,其图象关于原点对

6、称()为偶函数,其图象关于轴对称5.对称性正弦函数的对称中心是,对称轴是直线;余弦函数的对称中心是,对称轴是直线(正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴(中轴线)的交点).6.单调性从的图象上可看出:当时,曲线逐渐上升,的值由增大到当时,曲线逐渐下降,的值由减小到结合上述周期性可知:正弦函数在每一个闭区间上都是增函数,其值从增大到;在每一个闭区间上都是减函数,其值从减小到.余弦函数在每一个闭区间上都是增函数,其值从增加到;余弦函数在每一个闭区间上都是减函数,其值从减小到.三、例题分析例1、求函数y=sin(2

7、x+)的单调增区间.解析:求函数的单调增区间时,应把三角函数符号后面的角看成一个整体,采用换元的方法,化归到正、余弦函数的单调性.解:令z=2x+,函数y=sinz的单调增区间为[,].由≤2x+≤得≤x≤故函数y=sinz的单调增区间为[,](k∈Z)点评:“整体思想”解题变式训练1.求函数y=sin(-2x+)的单调增区间解:令z=-2x+,函数y=sinz的单调减区间为[,]故函数sin(-2x+)的单调增区间为[,](k∈Z).例2:判断函数的奇偶性解析:判断函数的奇偶性,首先要看定义域是否关于原点对称,然后再看与的关系,对(1)用诱导公式

8、化简后,更便于判断.解:∵=,∴所以函数为偶函数.点评:判断函数的奇偶性时,判断“定义域是否关于原点对称”是必须的步骤.变

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。