欢迎来到天天文库
浏览记录
ID:12669362
大小:183.75 KB
页数:13页
时间:2018-07-18
《超分辨率算法综述》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、图像超分辨率算法综述摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。关键词:图像超分辨率;插值;重建;学习;Abstract:Thispaperintroducedtheconceptionandoriginofimagesuperresolu-tiontechnology.Byreviewingthesethreekindsofmethods(interpolat
2、ion,reconstruct,study),itcontrastedandclassifiedthemethodsofimagesuper-resolution,andatlast,someperspectivesofsuper-resolutionaregiven.Keywords:imagesuper-resolution;interpolation;reconstruct;study;1引言1.1超分辨率的概念图像超分辨率率(superresolution,SR)是指由一幅低分辨率图像(lowresolution,LR)或图像序列
3、恢复出高分辨率图像(highresolution,HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。图1图像超分辨率示意图图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格
4、意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分
5、辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形状和尺寸、光学系统的像差、大气扰动、运动、散焦等。另外,在成像、传输、存储过程中,会引入不同类型的噪声,这些都会直接影响到图像的分辨率。此外,数字化采集过程也会影响图像的分辨率,欠采样效应会造成图像的频谱混叠,使获取的图像因变形效应而发生降质。由于军事侦察及医学图像、卫星图像、视频应用及其它许多领域的实际需要,人们对得到的图像的质量要求
6、越来越高。虽然光学元件能有效的限制传感器阵列上的图像频带宽度,使获取的图像又可能避免变形效应的发生。但这要求光学元件与传感器阵列进行有效的组合,而这在实际场合中是很难做到的,同时提升硬件要花费很高的经济成本,图像质量的提高也是有限的,因此,超分辨率图像复原技术就显得更加重要了,其中,图像超分辨率技术是数字图像处理领域中的一个重要分支。随着图像超分辨率理论和技术的日益成熟,图像超分辨率技术的应用更加广泛。本文着重对图像超分辨率方法进行阐述和分析,以向人们展示超图像分辨率技术的发展方向和应用前景。1.2图像超分辨率发展的背景及现状超分辨率概念
7、最早出现在光学领域。在该领域中,超分辨率是指试图复原衍射极限以外数据的过程。ToraldodiFrancia在1955年的雷达文献中关于光学成像第一次提出了超分辨率的概念。复原的概念最早是由J.L.Harris和J.w.Goodman分别于1964年和1965年提出一种称为Harris-Goodman频谱外推的方法。这些算法在某些假设条件下得到较好的仿真结果,但实际应用中效果并不理想。Tsai&Huang首先提出了基于序列或多帧图像的超分辨率重建问题。1982,D.C.C.Youla和H.Webb在总结前人的基础上,提出了凸集投影图像复原
8、(Pocs)方法。1986年,S.E.Meinel提出了服从泊松分布的最大似然复原(泊松-ML)方法。1991年和1992年,B.R.Hunt和PJ.Sementilli在Bayes分析的基础
此文档下载收益归作者所有