晶体三极管放大的简单原理

晶体三极管放大的简单原理

ID:12644593

大小:196.50 KB

页数:11页

时间:2018-07-18

晶体三极管放大的简单原理_第1页
晶体三极管放大的简单原理_第2页
晶体三极管放大的简单原理_第3页
晶体三极管放大的简单原理_第4页
晶体三极管放大的简单原理_第5页
资源描述:

《晶体三极管放大的简单原理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、晶体三极管放大的简单原理三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供Ib、Ic和Ie这三个电流。为了容易理解,我们还是用水流比喻电流(见图1)。这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。如果细管子中没有水流,粗管子中的闸门就会关闭。注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。三极管的基极b、集电极c和发射极e就对应着图4中的细管、粗

2、管和粗细交汇的管子。电路见图5,若给三极管外加一定的电压,就会产生电流Ib、Ic和Ie。调节电位器RP改变基极电流Ib,Ic也随之变化。由于Ic=βIb,所以很小的Ib控制着比它大β倍的Ic。Ic不是由三极管产生的,是由电源VCC在Ib的控制下提供的,所以说三极管起着能量转换作用。图1对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。但三极管厉害的地方在于:它可以通过小电流去控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀

3、门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如

4、既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。单纯从“放大”的角度来看,我们希望β值越大越好。可是,三极管接成共发射极放大电路(图2)时,从管子的集电极c到发射极

5、e总会产生一有害的漏电流,称为穿透电流Iceo,它的大小与β值近似成正比,β值越大,Iceo就越大。Iceo这种寄生电流不受Ib控制,却成为集电极电流Ic的一部分,Ic=βIb+Iceo。值得注意的是,Iceo跟温度有密切的关系,温度升高,Iceo急剧变大,破坏了放大电路工作的稳定性。所以,选择三极管时,并不是β越大越好,一般取硅管β为40~150,锗管取40~80。图2在常温下,锗管的穿透电流比较大,一般由几十微安到几百微安,硅管的穿透电流就比较小,一般只有零点几微安到几微安。Iceo虽然不大,却与温度有着密切的关系,它们遵循着所谓的“加倍规则”,这就是温

6、度每升高10℃,Iceo约增大一倍。例如,某锗管在常温20℃时,Iceo为20μA,在使用中管芯温度上升到50℃,Iceo就增大到160μA左右。测量Iceo的电路很简单(图3),三极管的基极开路,在集电极与发射极之间接入电源VCC(6V),串联在电路中的电流表(可用万用表中的0.1mA挡)所指示的电流值就是Iceo。图3如图4,假设三极管的β=100,RP=200K,此时的Ib=6v/(200k+100k)=0.02mA,Ic=βIb=2mA当RP=0时,Ib=6v/100k=0.06mA,Ic=βIb=6mA。以上两种状态都符合Ic=βIb,我们说,三极

7、管处于"放大区"。假设RP=0,Rb=1k,此时,Ib=6v/1k=6mA按Ic=βIb计算,Ic应等于600mA,而实际上,由于图中300欧姆限流电阻(Rc)的存在,实际上Ic=(6v/300)≈20mA,此时,Ic≠βIb,而且,Ic不再受Ib控制,即处于"饱和区",当RP和Rb大到一定程度,使Ube<死区电压(硅管约0.5V,锗管约0.3)此时be结处于不导通状态,Ib=0,则Ic=0,处于"截止区"。图4掌握三极管放大电路计算的一些技巧放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一

8、下(如图1)。图1是一共射的基本放大电路,一般我们对

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。