资源描述:
《基于空间投影理论的rpc模型求解方法研究(research on rpc model solving method based on space projection theory)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、基于空间投影理论的rpc模型求解方法研究(ResearchonRPCmodelsolvingmethodbasedonspaceprojectiontheory)Andpage1-----------------------Twenty-seventhvolumesecondphasemarinetechnologyVol.27,No.2June2008OCEANTECHNOLOGYJune,2008ResearchonRPCmodelsolvingmethodbasedonspaceprojectiontheoryFanP
2、ei,HuangWenqian,intheclouds(DalianNavalAcademyofthePLAhydrographicEngineeringDepartment,LiaoningDalian116018)Abstract:usingthespatialprojectionmodelofremotesensingimageandtakingintoaccounttheglobalDEM,asetofvirtual3DcontrolpointsisestablishedtosolvetheRPCmodel,Thep
3、roblemofsolvingtheRPCmodelissolvedwhenthestrictimagingmodelisunknownortoocomplex,anditisdifficulttosetupandthenumberofcontrolpointsisseriouslyinsufficient.ExperimentsprovethemethodThetheoryiscloseandtheprecisionishigh.Keywords:spaceprojectiontheory;globalDEM;3Dcont
4、rolpoint;RPCmodelCLCnumber:P23,documentidentificationcode:A,articlenumber:1003-2029(2008)02-0063-04P,P,P,PareallpolynomialsaboutX,Y,Z,eachofthem1234IntroductioncoordinatecomponentsX,Y,Z,powermaximumnotmorethan3.Intheformofeachpolynomial,suchasUnderthe:22P=a+aX+aY+a
5、Z+aXY+aXZ+aYZ+aX+aY+Thetechniquesofgeometriccorrectionforremotesensingimagesmainlyincludethestrictimagingmodelandthewide12345678and9232223AZ+aXYZ+aX+aXY+aXZ+aXY+aY+Thesemanticimagingmodelconsistsofthesetwomethods,amongthemthegeneralizedimagingmodelinRPC(rational101
6、11213141516)2223AYZ+aXZ+aYZ+aZThepolynomialmodelisindependentofthespecificsensorandhasasimplerform,so17181920Hasbeenwidelyused.RPCmodelasageneralizednewremotesensingsatelliteformula(1),(R,c)and(X,Y,Z)areimagecoordinatesandgroundsitting,respectively[2]Standardizedco
7、ordinatesaftertranslationandscaling.ThemodelofsensorimagingisakindofmodelthatcanbeobtainedapproximatelyinaccordancewiththestrictimagingmodelTheRPCPPmodelaccordingtothedenominator,therelationshipisdividedinto3types:P=P,Asimplegeneralizationmodelofdegree.Theessenceof
8、themodelistherationalfunctionmodel2424P=P=1,P=P=1.Eachformisdividedinto3accordingtotheorderofpolynomials(RationalFunctionModel).Atpresent,therear