欢迎来到天天文库
浏览记录
ID:1243789
大小:359.00 KB
页数:7页
时间:2017-11-09
《关于cuda的gmm模型快速训练方法与应用(》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、基于CUDA的GMM模型快速训练方法及应用吴奎,宋彦,戴礼荣(中国科学技术大学电子工程与信息科学系,安徽合肥,230027)摘要由于能够很好地近似描述任何分布,GMM在模式在识别领域得到了广泛的应用。GMM模型参数通常使用迭代的EM算法训练获得,当训练数据量非常庞大及模型混合数很大时,需要花费很长的训练时间。NVIDIA公司推出的CUDA技术通过在GPU并发执行多个线程能够实现大规模并行快速计算。由此,本文提出一种基于CUDA,适用于特大数据量的GMM模型快速训练方法,包括用于模型初始化的K-means算法的快速实现方法,以及用于模型参数估计的EM算法的快速实现方法
2、。文中还将这种训练方法应用到语种GMM模型训练中。实验结果表明,与IntelDualCorePentiumⅣ3.0GHzCPU的一个单核相比,在NVIDIAGTS250GPU上语种GMM模型训练速度提高了26倍左右。关键词:GMM模型;语种识别;图形处理单元;统一计算设备架构CUDAbasedFastGMMModelTrainingMethodanditsApplicationWuKui,SongYan,DaiLiRong(DepartmentofElectronicEngineeringandInformationScience,UniversityofScien
3、ceandTechnologyofChina,Hefei,230027,China)Abstract:Duetoitsgoodpropertytoprovideanapproximationtoanydistribution,GMMhasbeenwidelyappliedinthefieldofpatternrecognition.Usually,theiterativeEMalgorithmisappliedtoestimateGMMparameters.Thecomputationalcomplexityatmodeltrainingprocedurewillb
4、ecomeveryhighwhenlargeamountsoftrainingdataandlargemixturenumberareengaged.TheCUDAtechnologyprovidedbyNVIDIACorporationcanperformfastparallelcomputationbyrunningthousandsofthreadssimultaneouslyonGPU.Inthispaper,afastGMMmodeltrainingimplementationusingCUDAispresented,whichisespeciallyap
5、plicabletolargeamountsoftrainingdata.Thefasttrainingimplementationcontainstwoparts,theK-meansalgorithmformodelinitializationandtheEMalgorithmforparameterestimation.Furthermore,thisfasttrainingmethodhasbeenappliedinlanguageGMMstraining.Theexperimentalresultsshowthatlanguagemodeltraining
6、usingGPUisabout26timesfasteronNVIDIAGTS250whencomparedtotraditionalimplementationononeofthesinglecoreofIntelDualCorePentiumⅣ3.0GHzCPU.Keywords:GMMmodel;Languageidentification;GPU;CUDA1引言由于能够很好地近似描述任何分布,高斯混合模型(GaussianMixtureModel,GMM)在模式识别领域得到了广泛的应用。GMM模型参数通常使用迭代的EM(Expectation-Maximiz
7、ation)算法[1]训练获得。EM算法是一个迭代算法,需要对模型初始化,一般采用K-means算法实现EM算法的初始化。当训练数据量非常庞大及模型混合数很大时,模型训练需要花费很长的时间。例如,在GMM-UBM(GaussianMixtureModel-UniverseBackgroundModel)模型的语种识别系统[2]中,语种训练样本数非常庞大(如:NISTLRE2007包含14个大语种,对应的SDC[2]训练矢量特征总数为68281155),模型混合高斯数多(一般为2048)计算量巨大。如果用一个CPU的单核训练模型,那么训练时间就不得不成为一个需要考
此文档下载收益归作者所有