数学建模在汽车的刹车距离上的应用

数学建模在汽车的刹车距离上的应用

ID:12391056

大小:151.00 KB

页数:4页

时间:2018-07-16

数学建模在汽车的刹车距离上的应用_第1页
数学建模在汽车的刹车距离上的应用_第2页
数学建模在汽车的刹车距离上的应用_第3页
数学建模在汽车的刹车距离上的应用_第4页
资源描述:

《数学建模在汽车的刹车距离上的应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数学建模在汽车的刹车距离上的应用钟志平133905151汽车检测与维修1班数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。根据具体问题采用不同的模型。因为数学建模方法是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的

2、发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。用模型分析实际事物,锻炼我们的创新能力。摘要汽车刹车距离有两方面:反应距离和制动距离。本文从这两方面入手来研究汽车刹车距离,进而得出距离的函数模型,提车驾车建议。在模型的建立过程中,本文主要从影响汽车刹车距离的两个主要因素:司机的反应时间、汽车的车速入手。对于影响刹车距离的其他因素如:路面类型和状况、天气状况、驾驶员的操作技巧和身体状况等都视为相同的状态。在对于刹车过程的具体分析,主要分成两个阶段:第一阶段称为“反应阶段”即匀速直线运动阶段,利用公式d1=t1v求得;第二阶段称为“制动阶段”即匀减速直线运动

3、阶段,利用功能原理及牛顿第二定律得出:Fd2=Mv2/2;进而得出刹车的距离公式d2=+kv2。再者从所收集得来的数据中运用最小二乘法拟合数据,得出k值,代入公式d=t1v+kv2得出刹车的速度与距离关系式。进而得出刹车距离的函数模型并给驾驶者提出安全驾驶建议。关键词:“2秒准则”刹车距离反应距离1.问题提出与分析1.1背景与问题美国的某些司机培训课程中的驾驶规则:正常驾驶条件下,车速每增10英里/小时,后面与前车的距离应增一个车身的长度。又云,实现这个规则的简便办法是“2秒准则”:后车司机从前车经过某一标志开始默数,即后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,

4、而不管车速如何。试判断“2秒规则”与上述规则是一样的吗?这个规则的合理性如何?是否有更好的规则?建立数学模型,寻求更好的驾驶规则。1.2问题分析1.2.1两秒规则的合理性根据常识我们知道,10英里/小时(16公里/小时)车速下2秒钟行驶的距离为29英尺(9米),此距离远远大于车身的平均长度15英尺(4.6米)。这说明了“2秒准则”与“10英里/小时加一车身”规则不同。“2秒规则”和“车身规则”不同也就意味着司机处在两个选择中,而两个选择的对错也未知,这就给驾驶员带来了疑惑。所以两个规则的合理性有待验证。1.2.2数学模型的分析此模型问题的要求是建立刹车距离与车速之间的数量关系

5、。一方面,车速是刹车距离的主要影响因素,车速越快,刹车距离越长;另一方面,还有其它很多因素会影响刹车距离,包括车型、车重、刹车系统的机械状况、轮胎类型和状况、路面类型和状况、天气状况、驾驶员的操作技术和身体状况等。为了建立刹车距离与车速之间的函数关系可以从以下分析入手:经过仔细分析刹车的过程可以发现,刹车要经历两个阶段:第一阶段,司机意识到危险,做出刹车决定,并踩下刹车踏板使刹车系统开始起作用,汽车在反应时间段行驶的距离为“反应距离”;第二阶段,从刹车踏板被踩下、刹车系统开始起作用,到汽车完全停住,汽车在制动过程“行驶”(轮胎滑动摩擦地面),此距离为“制动距离”。进而可得出:

6、刹车距离=反应距离+制动距离。2.假设与建模2.1模型的假设(1)、假设道路、天气和驾驶员等条件相同,汽车没有超载,也没有故障;(2)、假设汽车在平直道路上行驶,驾驶员紧急刹车,一脚把刹车踏板踩到底,汽车在刹车过程没有转方向;(3)、假设汽车在反应阶段做匀速直线运动;(4)、假设汽车在制动过程做匀减速直线运动,加速度a只与车型有关,同车型时为常数,制动力所做的功只等于汽车动能的损失;(5)、假设刹车距离等于反应距离加上制动距离。2.2模型的建立与求解2.2.1模型的建立由前面的分析和假设可知:刹车距离d等于反应距离d1与制动距离d2之和,即d=d1+d2(公式2-1);反应距

7、离d1与车速v成正比d=t1v(公式2-2)(式中的t1为反应时间);刹车时使用最大制动力F,F作功等于汽车动能的改变;Fd2=Mv2/2(公式2-3)(式中F∝M,即F与车的质量M成正比)。因此由(公式2-3)推出下面距离的关系式:d2=kv2,再根据(公式2-1)和(公式2-2)可以得到d=t1v+kv2(公式2-4)因此模型可以定为:d=t1v+kv22.2.2模型的求解参数估计:反应时间t1的经验估计值为0.75秒,利用交通部门提供的一组实际数据拟合k。则刹车距离与速度的关系为:d-0.75v+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。