欢迎来到天天文库
浏览记录
ID:12331029
大小:7.57 MB
页数:8页
时间:2018-07-16
《义务教育2017学年高中数学人教a版选修2-3教案:2.4正态分布word版含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.4 正态分布教材分析 正态分布是高中数学新增内容之一,是统计中的重要内容.一方面,它是在学生学习了总体分布后给出的自然界最常见的一种分布,它是学生进一步应用正态分布解决实际问题的理论依据,因此它起着承上启下的桥梁作用;另一方面,正态分布具有许多良好的性质,许多分布都可以用正态分布来近似描述.因此在理论研究中,正态分布占有很重要的地位.课时分配 1课时教学目标 知识与技能掌握正态分布在实际生活中的意义和作用.结合正态曲线,加深对正态密度函数的理解.归纳正态曲线的性质.过程与方法能用正态分布、正态曲线研究有关随机变量分布的规律,引导学生通过
2、观察并探究规律,提高分析问题,解决问题的能力;培养学生数形结合,函数与方程等数学思想方法.情感、态度与价值观通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神.重点难点 教学重点:正态曲线的性质、标准正态曲线N(0,1).教学难点:通过正态分布的图形特征,归纳正态曲线的性质.1.回顾曲边梯形的面积S=f(x)dx的意义;2.复习频率分布直方图,频率分布折线图的作法、意义:①在频率分布直方图中,区间(a,b)对应的图形的面积表示____________________.②在频率分布直方图中,所有小矩形的面积的和为__
3、_____________________________.设计意图:用学过的知识来探究新问题,驱动学生思维的自觉性和主动性,让学生亲身感受知识的发生过程,既反映了数学的发展规律,又符合学生的思维特征和认知规律.提出问题:同学们知道高尔顿板试验吗?课本的内容表述了高尔顿板试验,我们将通过小球落入各个小槽中的频率分布情况来认识正态分布.活动设计:教师板书课题,学生阅读课本中关于高尔顿板的内容.提出问题:(1)运用多媒体画出频率分布直方图.(2)当n由1000增至2000时,观察频率分布直方图的变化.(3)请问当样本容量n无限增大时,频率分布直方图变化的情况如何?(频
4、率分布就会无限接近一条光滑曲线——总体密度曲线)(4)样本容量越大,总体估计就越精确.活动结果:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似
5、表示:φμ,σ(x)=e-,x∈(-∞,+∞).式中的实数μ、σ(σ>0)是参数,分别表示总体的平均数与标准差,φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.1.一般地,如果对于任何实数a,b(a
6、征数,可以用样本的均值去佑计;参数σ是正态分布的标准差,是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.2.早在1733年,法国数学家棣莫弗就用n!的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标X是众多随机碰撞的
7、结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;某地每年七月份的平均气温、平均湿度、降雨量等.正态分布在概率和统计中占有重要的地位.提出问题:下面给出三个正态分布的函数表示式,请找出其均值μ和标准差σ.(1)f(x)=e-;(2)f(x)=e-;(3)f(x)=e-2(x+1)2.答案:(1)μ=0,σ=1;(2)μ=1,σ=2;(3)μ=-1,σ=0.5.设计意图:概念一旦形成,必须及时加以巩固.通过对问题的解答,进一步加深对定义的
8、认识.提出
此文档下载收益归作者所有