数学运算之抽屉原理专题

数学运算之抽屉原理专题

ID:12325899

大小:43.50 KB

页数:5页

时间:2018-07-16

数学运算之抽屉原理专题_第1页
数学运算之抽屉原理专题_第2页
数学运算之抽屉原理专题_第3页
数学运算之抽屉原理专题_第4页
数学运算之抽屉原理专题_第5页
资源描述:

《数学运算之抽屉原理专题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数学运算之抽屉原理专题抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为:第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:第二抽屉原理:把(mn-1)个物体放入n个抽

2、屉中,其中必有一个抽屉中至多有(m—1)个物体。制造抽屉是运用原则的一大关键例1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?A.12B.13C.15D.16【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。例2、从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?A.7    B.

3、10     C.9    D.8【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。例3、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?() 

4、           A.3     B.4    C.5   D.6 【解析】这是一道典型的抽屉原理,只不过比上面举的例子复杂一些,仔细分析其实并不难。解这种题时,要从最坏的情况考虑,所谓的最不利原则,假定摸出的前4粒都不同色,则再摸出的1粒(第5粒)一定可以保证可以和前面中的一粒同色。因此选C。传统的解抽屉原理的方法是找两个关键词,“保证”和“最少”。保证:5粒可以保证始终有两粒同色,如少于5粒(比如4粒),我们取红、黄、蓝、白各一个,就不能“保证”,所以“保证”指的是要一定没有意外。最小:不能取大于5的,如为6,那么5也能“保证”,就为5。例4、从一副

5、完整的扑克牌中至少抽出()张牌.才能保证至少6张牌的花色相同。          A.21    B.22    C.23    D.24解析:2+5*4+1=23抽屉原则  抽屉原则,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原则呢?我们先从一个最简单的例子谈起.  将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另

6、一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.  如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果.  如果将上述问题中的苹果换成兔子、糖果、书本或数,同时,将抽屉相应地换成兔笼、小孩、学生或数的集合,仍然可以得到相同的结论.由此可以看出,上面推理的正确性与具体的事物是没有关系的

7、.如果我们把一切可以与苹果互换的事物称为元素,而把一切可以与抽屉互换的事物叫做集合,那么上面的结论就可以叙述为:八个元素以任意方式分到七个集合之中,一定有一个集合中至少有两个元素.  同样,苹果与抽屉的具体数目也是无关紧要的,只要苹果的数量比抽屉的数量多,推理依然成立.  通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.  抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.  应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么做为“抽屉”;其次要根据题目的条件和结论,结合

8、有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。