浅谈行程问题应用题解法

浅谈行程问题应用题解法

ID:12303977

大小:36.00 KB

页数:3页

时间:2018-07-16

浅谈行程问题应用题解法_第1页
浅谈行程问题应用题解法_第2页
浅谈行程问题应用题解法_第3页
资源描述:

《浅谈行程问题应用题解法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、浅谈行程问题应用题解法在列方程解应用题问题中,行程问题是一个必不可少的内容,也是学生比较难的一个内容。本文是试对程问题进行归类剖析,望能抛砖引玉。一、弄清行程问题中基本的量和他们之间的关系。行程问题中有三个基本量:速度、时间、路程。这三个量之间的关系是:路程=时间×速度 变形可得到:速度=路程/时间    时间=路程/速度          这三个量的作用是知道其中两个就可以表示第三个。二、行程问题常见类型1、相遇问题。2、追急问题。3顺(逆)水航行问题。4、跑道上的相遇(追急)问题三、行程问题中的等量关系所谓等量关系就是意义相同的量能用等量连接的

2、关系。若路程已知,则应找时间的等量关系和速度的等量关系;若速度已知,则应找时间的等量关系和路程的等量关系;若时间已知,则找路程的等量关系和速度的等量关系。在航行问题中还有两个固定的等量关系,就是:顺水速度=静水速度+水流速度逆水速度=静水速度+水流速度四、分类举例例1 :小明每天早上要在7:50之前赶到距离家1000米的学校去上学。小明以80米/分的速度出发,5分钟后小明的爸爸发现他忘了带语文书。于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。爸爸追小明用了多长时间?分析:此题中小明的速度,爸爸的速度均已告诉。因此速度之间不存在等量

3、关系。我们只能在父子二人的时间和父子二人的路程上找等量关系。由于小明比爸爸早出发5分钟,且相遇时在同一个时刻,因此相遇时爸爸比小明少用5分钟,可得时间的等量关系:①爸爸的时间+5分钟=小明的时间 当爸爸追上小明时,父子二人都是从家走到相遇的地点,故爸爸行的路程与小明行的路程相等。得路程相等关系。②爸爸路程=小明路程   如果爸爸追上小明用了x分钟,则第一个相等关系得:小明用了(x+5)分钟,带入第二个等量关系,可得方程 180x=80(x+5)例2:甲乙两人在环形跑道上练习跑步。已知环形跑道一圈长400米,乙每秒跑6米,甲的速度是乙的4/3倍。⑴若

4、甲、乙两人在跑道上相距8米处同时出发,经过几秒两人相遇?⑵若甲在乙前8米处同时同向出发,那么经过多长时间两人首次相遇?分析:此题甲乙两人的速度均已告诉,因此我们只能在时间中找等量关系,在路程中找等量关系。第⑴问是一个在环形跑道上的相遇问题。由于两人反向同时出发,最后相遇。故相遇时两人跑的时间是相等。得到第一个等量关系:①甲时间=乙时间     由于两人出发时相距8米,所以当两人第一次相遇时,共跑了(400-8)米。故可以得到第二个路程的等量关系 ②甲路程+乙路程=400-38 设x秒后两人相遇,则相遇时乙跑了6x米,甲跑了6×x米,代入第二个等量关

5、系中可得方程  6×x+6x=400-8第二问是一个环形跑道上的追急问题。因两人同时出发,故当甲追上乙时,两人用时相同。可得第一个时间等量关系 ①甲时间=乙时间由于两人同向出发时相距8米,且速度较快的甲在前,故当两人第一次相遇时甲必须比乙多跑(400-8)米,可得第二个行程的等量关系②甲路程=乙路程+400-8设X秒后甲与乙首次相遇,此时甲跑了6×x米,乙跑了6x米,代入第二个等量关系可得方程:6×x=6x+400-8例3:一货轮航行于A、B两个码头之间,水流速度为3km/小时,顺水需2.5小时,逆水需3小时,求两码头之间的距离。分析:此题是一个航

6、行问题,由于顺水所需时间,逆水所需时间均已告诉,所以我们只找速度等量关系,路程等量关系,而其速度的两个等量关系时固有的,即:顺水速度=静水速度+水速、逆水速度=静水速度-水速。对此提来讲就是①顺水速度=静水速度+3;②逆水速度=静水速度-3.路程关系是比较明显的,即:③顺水路程=逆水路程我们用③来列方程,那就是需要顺水时间、顺水速度、逆水时间、逆水速度,两个时间已知,只要放出静水速度为xkm/h,由①、②就可以分别列出表示出顺水速度=(x+3)km/h,逆水速度=(x+3)km/h,代入③可得方程:2.5(x+3)=3(x-3)我们看到设出来的未知

7、数不是题中要问的,这就是间接设元。若设出来的未知数正好是题中所要求的,那就是直接设元。好多题都是间接设元比较简单。此题若是直接设元会比较难。例4:一列火车匀速前进,从开进入300米唱的隧道到完全驶出隧道共用了20秒,隧道顶部一盏固定的聚关灯照射火车10秒,这列火车的长度是多少?分析:此题的关键是把题意理解清楚。“开始进入隧道到完全驶出隧道”的意思是火车进入隧道到火车完全离开隧道。此过程火车行驶的路程应为隧道的长度与火车长度的和。故可得第一个等量关系①火车路程=火车长度+300 “聚光灯照射火车10秒”的意思是火车以它的速度10秒行进的路程是火车的长

8、度。故可得第二个等量关系②火车长度=火车速度×10   设该火车的速度为x米/秒,则由②得火车长度为10x米。代入第一个等

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。