欢迎来到天天文库
浏览记录
ID:12155731
大小:682.00 KB
页数:12页
时间:2018-07-15
《2011年辽宁高考《理数》真题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2011年普通高等学校招生全国统一考试数学试卷(理科)(辽宁卷)(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.为正实数,为虚数单位,,则A.2B.C
2、.D.12.已知M,N为集合I的非空真子集,且M,N不相等,若,则A.MB.NC.ID.3.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为A.B.1C.D.4.△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=,则A.B.C.D.5.从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=A.B.C.D.6.执行右面的程序框图,如果输入的n是4,则输出的P是-12-http://school.chinaedu.comA.8B.5
3、C.3D.27.设sin,则A.B.C.D.8.如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角9.设函数,则满足的x的取值范围是A.,2]B.[0,2]C.[1,+]D.[0,+]10.若,,均为单位向量,且,,则的最大值为A.B.1C.D.211.函数的定义域为,,对任意,,则的解集为A.(,1)B.(,+)C.(,)D.(,+)12.已知球的直径SC=4,A,B是该球球面上的两点,AB=,,则棱锥S—ABC
4、的体积为A.B.C.D.1第Ⅱ卷-12-http://school.chinaedu.com本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知点(2,3)在双曲线C:上,C的焦距为4,则它的离心率为.14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________
5、万元.15.一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.16.已知函数=Atan(x+)(),y=的部分图像如下图,则.三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{an}满足a2=0,a6+a8=-10(I)求数列{an}的通项公式;(II)求数列的前n项和.18.(本小题满分12分)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:平面PQC⊥平面DCQ;-12-http://school.chinaedu.com(I
6、I)求二面角Q—BP—C的余弦值.19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403397390404388400412406品种乙419403412418408423400413分
7、别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据的的样本方差,其中为样本平均数.20.(本小题满分12分)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.(I)设,求与的比值;(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.21.(本小题满分12分)已知函数.-12-http:
此文档下载收益归作者所有