资源描述:
《超氧阴离子自由基电化学分析的新进展》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、超氧阴离子自由基电化学分析的新进展超氧阴离子自由基电化学分析的新进展超氧阴离子自由基电化学分析的新进展超氧阴离子自由基电化学分析的新进展超氧阴离子自由基电化学分析的新进展超氧阴离子自由基电化学分析的新进展 1引言 作为新陈代谢的活性中间体,正常状态下自由基在生物体中保持相对稳定的动态平衡。细胞自身的细胞色素c(Cytochromec,Cyt.c)、超氧化物歧化酶(Superoxidedismutase,SOD)等具有抗氧化能力,可以将自由基转化为无害物质进行自我修复,这一系列的过程对细胞增殖、凋亡
2、、损伤具有重要的影响,并在细胞信号转导过程中起着十分重要的作用。当细胞受到外界剌激或发生病变过程中会产生过量O2'_自由基,使得细胞产生氧化应激,引起癌症、神经性疾病、帕金森病等生理病变,从而对细胞的生理和病理功能产生重要的影响。因此,检测生物体中O〗_自由基的浓度具有十分重要的现实意义。 然而,因为自由基具有氧化活性高、体内浓度低、寿命短等特点,所以需要发展原位、实时、活体的自由基检测方法。电化学方法具有操作简单、易微型化、灵敏度高、易于原位、实时、在体检测等优点而备受关注,其中,基于酶传
3、感器的电化学分析方法最为引人注目。 2溶液/电极界面的设计及酶的直接电子传递 2.1溶液/电极界面的设计 针对自由基的电化学分析,对溶液/电极界面进行设计以改善和提高电极的分析性能是一个极其关键的问题?16。酶自身体积较大,而活性中心通常都深埋在其内部,从而加大了活性中心到电极表面的电子传递距离,不利于实现直接电子传递。第二代酶传感器采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子,但存在媒介体的流失和干扰大的缺陷,给O〗_自由基的准确测定带来干扰,从而极大限制了其实际应用。第三
4、代酶传感器的开发使这个领域向前迈进了一大步。通过界面设计优化,利用酶的直接电子传递机理克服了原先的不足,能够实现细胞或生物体中自由基的直接检测。界面设计优化是人为地设计电极表面微结构和其界面反应,通过将酶固定在电极表面上,使暴露的电活性中心更接近电极表面,实现酶与电极之间快速的电子传递,达到预期检测的目标。2.1.1分子设计分子自组装是对固体表面进行修饰最为有效的手段之一。高度有序、结构可控、定向密集的稳定分子层为保持酶蛋白质的天然结构和构象提供理想的微环境。同时,单分子作为加快电子传递的促进剂,可以
5、用于探索电极表面分子微结构和宏观电化学响应之间-SOD)分别固定在巯基半胱氨酸修饰的金电极界面上,首次同时实现3种SOD的直接电子传递;巯基半胱氨酸作为促进剂加快电子的传递。通过分子设计在界面上自组装单分子体系考察电子转移过程,为更深层次的分子设计和功能组装反馈信息M。 此外,作为一种常用的选择性结合组氨酸标记蛋白质的方式,次氮基三乙酸/组氨酸(NTA/HT)技术成为组氨酸结合最成功的模版。其将蛋白质定向有序固定在电极表面上,并加快电子传递。Joln_等㈣利用该通用模版技术成功将蛋白质固定在金电极表
6、面上,通过大环1.2纳米材料利用酶的特异性检测O2'_自由基时,往往受限于酶负载量过少或缺乏电子传递导体从而致使电信号过小或者电子传递过慢,影响传感器的整体分析性能。纳米材料是材料学中最基础、最活跃的组成部分。不同于体材料和单个分子,纳米材料具有小尺寸效应、表面效应和量子尺寸效应等独特的物理化学性质,特别是良好的生物相容性和稳定性,可作为负载酶的良好基质,在传感领域获得广泛的应用。 Brown等M将直径12nm单层金溶胶颗粒修饰二氧化锡电极,实现了溶液中Cyt.c的直接、可逆电化学,且无需任
7、何预处理步骤。金溶胶颗粒可看作是空间紧密而独立的微电极组合体。但随着纳米颗粒的聚集,Cyt.c的电化学变的准可逆或者不可逆,表明纳米金属尺寸和形貌在实现蛋白质的直接电子传递中也起到极其关键的作用。Zhu等122首次利用1,5或二硫醇交替连接Au、Ag胶体制备多层Au/Ag膜,在温和条件下通过氯金酸溶液去除成孔物质纳米Ag,通过层层自组装技术在氧化铟锡(ITO)电极表面制备了纳米多孔金膜。Cyt.c保持其生物催化活性,电子转移速率为3.9s!1。同时,该第三代传感器具有良好的选择性和稳定性,其检出限达到
8、6.3x106mol/L,线性范围是1.0x105~1.2x102mol/L。 Bi等M通过将多壁碳纳米管修饰玻碳电极上实现了SOD的固定。多壁碳纳米管表面的晶格缺陷提供了较高的局部电子密度,有利于电子在酶蛋白和碳纳米管之间传递;同时,特殊结构的碳纳米管可以作为“分子导线”,加快电子传递到SOD的活性中心,以上两方面因素致使SOD在电极表面上实现直接电子传递。 Deng等M利用蒸汽方法直接在预处理ITO表面沉积上一层花状ZnO纳米材料,设计出新型纳米