欢迎来到天天文库
浏览记录
ID:12028885
大小:437.00 KB
页数:31页
时间:2018-07-15
《浙教版八年级数学上《第2章特殊三角形》单元测试含答案解析初二数学试题试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《第2章特殊三角形》 一、选择题1.下列图形不是轴对称图形的是( )A.线段B.等腰三角形C.角D.有一个内角为60°的直角三角形2.下列命题的逆命题正确的是( )A.全等三角形的面积相等B.全等三角形的周长相等C.等腰三角形的两个底角相等D.直角都相等3.等腰三角形两边长为3和6,则周长为( )A.12B.15C.12或15D.无法确定4.如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD上的四点,则图中阴影部分的总面积是( )A.6B.8C.4D.12
2、5.有一个角是36°的等腰三角形,其它两个角的度数是( )A.36°,108°B.36°,72°C.72°,72°D.36°,108°或72°,72°6.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,BD=5cm,则点D到AB的距离是( )A.5cmB.4cmC.3cmD.2cm7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A.1,2,3B.1,1,C.1,1,D.1
3、,2,8.如图,△ABC的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形9.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为( )A.6B.12C.32D.6410.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结B
4、D交CE于点G,连结BE.下列结论中,正确的结论有( )①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE=BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个 二、填空题11.命题“角平分线上的点到角的两边的距离相等”的逆命题是 .12.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= .13.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC= .14.如图,直线上有三个正方形a,b.c,若a
5、,c的面积分别为5和12,则b的面积为 .15.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为 .16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 .17.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为 .18.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E,C
6、E=2,BD=6,则DE的长为 .19.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为,则B′E的长为 .20.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射线BC上一动点D,从点B出发,以厘米每秒的速度匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为 秒.(结果可含根号). 三、解答题(共50分)21.如图,在Rt△ABC中,∠B=90°,分别以点A、
7、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.23.现在给出两个三角形,请你把图(1)分割成两个等腰三角形,把图(2)分割成三个等腰三角形.要求:在图(1)、(2)上分割:标出分割后的三角形的各内角的
8、度数.24.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=∠B,∠C=50°.求∠BAC的度数.25.已知:如图,在△ABC中,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.(1)求证:CE=AF;(2)若CD=1,AD=,且∠B=20°,求∠BAF的度数.26.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使
此文档下载收益归作者所有