欢迎来到天天文库
浏览记录
ID:11909205
大小:1.60 MB
页数:21页
时间:2018-07-14
《西藏自治区技术先进型企业认定管理办法-西藏自治区科技厅》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:(米).已知测量结果服从,求参数和的矩估计.解的矩估计为,的矩估计为,所以2.设是来自对数级数分布的一个样本,求的矩估计.解(1)因为很难解出来,所以再求总体的二阶原点矩(2)(1)(2)得所以所以得的矩估计·110·3.设总体服从参数为和的二项分布,为取自的样本,试求参数和的矩估计解解之得,,即,,所以和的矩估计为,.4.设总体具有密度其中参数为已知常数,且,从中抽得一个样本,,求的矩估计解,解出得·110·于是的矩估计为
2、.5.设总体的密度为试用样本求参数的矩估计和极大似然估计.解先求矩估计:解出得所以的矩估计为.再求极大似然估计:,,,解得的极大似然估计:.6.已知总体在上服从均匀分布,是取自的样本,求的矩估计和极大似然估计.解先求矩估计:,·110·解方程组得注意到,得的矩估计为,.再求极大似然估计,,由极大似然估计的定义知,的极大似然估计为;.7.设总体的密度函数如下,试利用样本,求参数的极大似然估计.(1)(2).解(1)解似然方程,得的极大似然估计·110·(2)由极大似然估计的定义得的极大似然估计为样本中位
3、数,即8.设总体服从指数分布试利用样本求参数的极大似然估计.解由极大似然估计的定义,的极大似然估计为9.设来自几何分布,试求未知参数的极大似然估计.解,解似然方程·110·,得的极大似然估计。10.设是来自两个参数指数分布的一个样本.其中,求参数和的(1)极大似然估计;(2)矩估计。解(1)由极大似然估计的定义,得的极大似然估计为;解似然方程得的极大似然估计(2)解方程组得.所以的矩估计为·110·11.罐中有个硬币,其中有个是普通硬币(掷出正面与反面的概率各为0.5)其余个硬币两面都是正面,从罐中随
4、机取出一个硬币,把它连掷两次,记下结果,但不去查看它属于哪种硬币,如此重复次,若掷出0次、1次、2次正面的次数分别为,利用(1)矩法;(2)极大似然法去估计参数。解设为连掷两次正面出现的次数,‘取出的硬币为普通硬币’,则,,即的分布为(1)解出得的矩估计为(2),,解似然方程·110·得的极大似然估计.12.设总体的分布列为截尾几何分布,从中抽得样本,其中有个取值为,求的极大似然估计。解解似然方程得的极大似然估计.13.设总体服从正态分布是其样本,(1)求使得是的无偏估计量;(2)求使得为的无偏估计量
5、.解(1)可见当时,是的无偏估计量.·110·(2)设,因,所以.因为,所以于是故当时是的无偏估计。14.设是来自参数为的泊松分布总体的样本,试证对任意的常数,统计量是的无偏估计量。证(此处利用了是的无偏估计,是的无偏估计),所以对任意的是的无偏估计。15.设总体有期望为一样本,问下列统计量是否为的无偏估计量?(1);(2);(3);(4);(5);(6).解(1),(2),(3)都是样本的线性组合,而且组合系数之和为1,故它们都是的无偏估计。但(4),(5),(6)一般不是的无偏估计,如·110·,
6、则,而不是0就是1,且,故即不是的无偏估计。16.设是参数的无偏估计量,且有,试证明不是的无偏估计量。证,即不是的无偏估计量.注:该题说明:当是未知参数的无偏估计时,的函数不一定是的函数的无偏估计。17.设总体,是来自的样本,试证估计量;,.都是的无偏估计,并指出它们中哪一个最有效.证故都是的无偏估计.,,.所以最有效.18.设总体服从区间上的均匀分布,未知,·110·是取自的样本。(1)求的矩估计和极大似然估计量;(2)上述两个估计量是否为无偏估计量,若不是,请修正为无偏估计量;(3)问在(2)中两
7、个无偏估计量哪一个更有效。解(1)先求矩估计,,所以的矩估计为再求极大似然估计.,所以的极大似然估计为(2)可见矩估计是的无偏估计.为求的数学期望,先求的密度.总体的分布函数为的分布函数为所以·110·可见不是的无偏估计,若将修正为,则是的无偏估计。(3).故较有效.19.设总体的数学期望已知,试证统计量是总体方差的无偏估计.证,证毕.20.设总体为来自的样本,试证是的相·110·合(一致)估计.证因为相互独立,所以也相互独立且具有相同的分布,由大数定理,对任意的有.即依概率收敛于,而依概率收敛于,由
8、依概率收敛的性质.又由于(当时)而,故依概率收敛于,从而是的相合估计。21.设是来自总体的一个样本,是的一个估计量,若且试证是的相合(一致)估计量。证由切比雪夫不等式,对任意的有于是即依概率收敛于,故是的相合估计。22.设是取自均匀分布在上的一个样本,试证是的相合估计。证的分布函数为·110·的密度为所以由切比雪夫不等式有当时故是的相合估计.23.从一批钉子中抽取16枚,测得长度(单位:厘米)为2.14,2.10,2.13,2.15,2.13,2.12,
此文档下载收益归作者所有