欢迎来到天天文库
浏览记录
ID:11772301
大小:177.50 KB
页数:11页
时间:2018-07-13
《黄冈中学2012届初三入学考试数学试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、黄冈中学2012届初三入学考试数学试题一、填题(每小题3分,满分30分)1、—2的倒数为_____________.2、化简:=_____________.3、分解因式:_____________.4、函数中,自变量x的取值范围是_____________.5、如图1,已知直线AB∥CD,直线EF与直线AB、CD分别交于点E、F,且∠1=70°,则∠2=_____________.6、已知一组数据为:8,9,7,7,8,7,则这组数据的中位数为_____________.7、如图2,四边形ABCD中,AB∥CD,要使ABCD为平行四边形,则可添加的条件为___________
2、__(填一个即可).8、如图3,在△ABC中,∠B=45°,cos∠C=,AC=5a,则△ABC的面积用含a的式子表示是_____________.9、如图4,△ABC中,∠A=30°,∠C=90°,作△ABC的外接圆.若AB=12cm,那么的长是_____________cm(保留三个有效数字).10、如图5,一个数表有7行7列,设aij表示第i行第j列上的数(其中i=1,2,3,…,j=1,2,3,…,).例如:第5行第3列上的数a53=7,则(1)(a23-a22)+(a52-a53)=_____________.(2)此数表中的四个数满足(anp-ank)+(amk-
3、amp)=_____________.二、选择题(每小题3分,满分18分)11、四边形的内角和为( )A.90° B.180°C.360° D.720°12、某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为( )A. B.C. D.13、已知⊙O1的半径为5cm,⊙O2的半径为6cm,两圆的圆心距O1O2=11cm,则两圆的位置关系为( )A.内切 B.外切C.相交 D.外离14、下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )15、已知四条直线y=kx
4、-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为( )A.1 B.—2C.1或-2 D.2或-116、如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为( )A. B.1C.2 D.三、解答题17、(6分)计算:18、(7分)在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.在一个不透明的口袋中,装有除标号外其它完全相同的A、B、C三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是A球,则表演唱歌;如果摸到的是B球,则表演跳
5、舞;如果摸到的是C球,则表演朗诵.若小明要表演两个节目,则他表演的节目不是同一类型的概率是多少?19、(7分)如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.20、(8分)“城市让生活更美好”,上海世博会吸引了全世界的目光,五湖四海的人欢聚上海,感觉世博.5月24日至5月29日参观世博会的总人数为230万,下面的统计图是每天参观人数的条形统计图: (1)5月25日这天的参观人数有_____________万人,并补全统计图; (2)这6天参加人数的极差是_________
6、____万人. (3)这6天平均每天的参观人数约为多少万人?(保留三位有效数学)(4)本届世博会会期为184天,组委会预计参观人数将达到7000万,根据上述信息,请你估计:世博会结束时参观者的总人数能否达到组委会的预期目标?21、(7分)如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D、B、C在同一水平面上. (1)改善后滑滑板会加长多少米? (2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由. (参考数据:,,,以上结果均保留到小数点后两位
7、.)22、(8分)今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?23、(8分)如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连结BO、ED,有BO∥ED,作弦EF⊥AC于
此文档下载收益归作者所有